login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A141760
Triangle T, read by rows, where the g.f. of column k in matrix power T^m is given by: 1/(1-x)^m = Sum_{n>=k} [T^m](n,k) * x^(n-k)/(1+x)^{n(n-1)/2 - k(k-1)/2} for k>=0.
4
1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 6, 6, 3, 1, 1, 26, 26, 13, 4, 1, 1, 154, 154, 77, 23, 5, 1, 1, 1188, 1188, 594, 175, 36, 6, 1, 1, 11474, 11474, 5737, 1678, 336, 52, 7, 1, 1, 134432, 134432, 67216, 19579, 3863, 576, 71, 8, 1, 1, 1863168, 1863168, 931584, 270683, 52944, 7731
OFFSET
0,7
FORMULA
Matrix powers satisfy: T^m = P(i)^-1 * P(m+i) for all m and i, where P(m) is given by:
[P(m)](n,k) = [x^(n-k)] 1/(1-x)^m * (1+x)^{n(n-1)/2 - k(k-1)/2} for n>=k>=0.
Let U = unsigned matrix inverse (T^-1) with leftmost column dropped, then U = A107876 where [U^k](n,k) = U(n,k-1) for n>=k>0.
G.f. for column k of T: 1/(1-x) = Sum_{n>=0} T(n,k)*x^(n-k)/(1+x)^{n(n-1)/2 - k(k-1)/2}.
T(n,k) = 1 - Sum_{j=k..n-1} T(j,k)*(-1)^(n-j)*C(j(j-1)/2 - k(k-1)/2 + n-j-1, n-j) for n>k with T(k,k)=1 for k>=0.
G.f. for column k of matrix power T^m:
1/(1-x)^m = Sum_{n>=0} [T^m](n,k)*x^(n-k)/(1+x)^{n*(n-1)/2 - k*(k-1)/2}.
[T^m](n,k) = C(m+n-1,n) - Sum_{j=k..n-1} [T^m](j,k)*(-1)^(n-j)*C(j(j-1)/2 - k(k-1)/2 + n-j-1,n-j) for n>k with [T^m](k,k)=1 for k>=0.
EXAMPLE
Triangle T begins:
1;
1, 1;
1, 1, 1;
2, 2, 1, 1;
6, 6, 3, 1, 1;
26, 26, 13, 4, 1, 1;
154, 154, 77, 23, 5, 1, 1;
1188, 1188, 594, 175, 36, 6, 1, 1;
11474, 11474, 5737, 1678, 336, 52, 7, 1, 1;
134432, 134432, 67216, 19579, 3863, 576, 71, 8, 1, 1;
1863168, 1863168, 931584, 270683, 52944, 7731, 911, 93, 9, 1, 1; ...
Matrix square, T^2, begins:
1;
2, 1;
3, 2, 1;
7, 5, 2, 1;
23, 17, 7, 2, 1;
105, 79, 33, 9, 2, 1;
641, 487, 205, 55, 11, 2, 1;
5034, 3846, 1626, 433, 83, 13, 2, 1; ...
where g.f. for column k of matrix square T^2 is:
1/(1-x)^2 = Sum_{n>=0} [T^2](n,k)*x^(n-k)/(1+x)^{n(n-1)/2 - k(k-1)/2}.
Matrix inverse, T^-1, begins:
1;
-1, 1;
0, -1, 1;
0, -1, -1, 1;
0, -2, -2, -1, 1;
0, -7, -7, -3, -1, 1;
0, -37, -37, -15, -4, -1, 1;
0, -268, -268, -106, -26, -5, -1, 1; ...
Let U = unsigned T^-1 with leftmost column dropped,
then U = A107876 where [U^k](n,k) = U(n,k-1) for n>=k>0.
The g.f. for column k of matrix inverse T^-1 is:
1-x = Sum_{n>=0} [T^-1](n,k) * x^(n-k)/(1+x)^{n(n-1)/2 - k(k-1)/2}.
MATRIX PRODUCTS:
T = P(1)^-1 * P(2) = P(2)^-1 * P(3) = P(m)^-1 * P(m+1);
P(1) begins:
1;
1, 1;
2, 2, 1;
8, 7, 3, 1;
57, 42, 16, 4, 1;
638, 386, 130, 29, 5, 1;
9949, 4944, 1471, 299, 46, 6, 1; ...
where [P(1)](n,k) = [x^(n-k)] 1/(1-x)*(1+x)^{n(n-1)/2-k(k-1)/2};
P(2) begins:
1;
2, 1;
5, 3, 1;
20, 12, 4, 1;
129, 72, 23, 5, 1;
1268, 630, 187, 38, 6, 1;
17548, 7599, 2063, 392, 57, 7, 1; ...
where [P(2)](n,k) = [x^(n-k)] 1/(1-x)^2*(1+x)^{n(n-1)/2-k(k-1)/2};
P(3) begins:
1;
3, 1;
9, 4, 1;
38, 18, 5, 1;
240, 111, 31, 6, 1;
2223, 955, 256, 48, 7, 1;
28672, 11124, 2794, 500, 69, 8, 1; ...
where [P(3)](n,k) = [x^(n-k)] 1/(1-x)^3*(1+x)^{n(n-1)/2-k(k-1)/2}.
MATHEMATICA
T[n_, k_, m_] := T[n, k, m] = If[n<k || k<0, 0, If[n == k, 1, Binomial[m+n- 1, n] - Sum[T[j, k, m]*(-1)^(n-j)*Binomial[j*(j-1)/2 - k*(k-1)/2 + n-j-1, n-j], {j, k, n-1}]]]; Table[T[n, k, 1], {n, 0, 10}, {k, 0, n}] // Flatten (* Jean-François Alcover, Sep 19 2016, adapted from PARI *)
PROG
(PARI) T(n, k, m=1)=if(n<k || k<0, 0, if(n==k, 1, binomial(m+n-1, n) - sum(j=k, n-1, T(j, k, m)*(-1)^(n-j)*binomial(j*(j-1)/2-k*(k-1)/2+n-j-1, n-j))))
CROSSREFS
Cf. columns: A141761, A141762, A141763; A107876 (unsigned inverse).
Sequence in context: A136247 A370207 A086610 * A114626 A221916 A124773
KEYWORD
nonn,tabl
AUTHOR
Paul D. Hanna, Jul 18 2008
STATUS
approved