login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A141757
Even terms in A100933.
3
50, 98, 150, 242, 250, 294, 338, 350, 490, 550, 578, 650, 686, 722, 726, 750, 850, 950, 1014, 1050, 1058, 1078, 1150, 1210, 1274, 1450, 1470, 1550, 1650, 1666, 1682, 1690, 1694, 1734, 1750, 1850, 1862, 1922, 1950, 2050, 2058, 2150, 2166, 2254, 2350, 2366
OFFSET
1,1
MAPLE
with(numtheory):
# For A100549: if n = prod_p p^e_p, then pp = largest prime <= 1 + max e_p
pp := proc(n) local f, m; option remember;
if (n = 1) then
return 1;
end if;
m := 1:
for f in op(2..-1, ifactors(n)) do
if (f[2] > m) then
m := f[2]:
end if;
end do;
prevprime(m+2);
end proc;
# For A100762: B = prod_{p <= pp(n)} p^e_p
B := proc(n) local v, f, pv; global pp; option remember;
pv := pp(n);
v := 1:
for f in op(2..-1, ifactors(n)) while f[1] <= pv do
v := v * f[1]^f[2];
end do;
return v;
end proc;
# For A100417: Bgood = (is pp(n) = pp(B(n))), that is, is B(n) enough to establish pp(n)?
Bgood := proc(n) global pp;
`if`(pp(B(n))=pp(n), true, false);
end proc;
# For A100933 and A141757:
t0:=select(not Bgood, [$1..3000]);
t1:=[];
for n from 1 to nops(t0) do
if t0[n] mod 2 = 0 then t1:=[op(t1), t0[n]]; fi; od: t1;
CROSSREFS
Sequence in context: A255585 A260901 A090997 * A248023 A328253 A044139
KEYWORD
nonn
AUTHOR
STATUS
approved