OFFSET
1,2
LINKS
Vaclav Kotesovec, Table of n, a(n) for n = 1..230
FORMULA
a(n) = [q^n] { ([n+2]_q)! * Sum_{m=0..n+2} (-1)^m * q^(m(m-1)/2) / ([m]_q)! }; here, the q-factorial of n is denoted by ([n]_q)! = Product_{j=1..n} (1-q^j)/(1-q), with ([0]_q)! = 1.
a(n) ~ c * 4^n / sqrt(Pi*n), where c = 2*QPochhammer(1/2)^2 = 0.166797127727497043069083616310625... - Vaclav Kotesovec, Aug 30 2023, updated Mar 17 2024
PROG
(PARI) {a(n)=polcoeff(prod(j=1, n+2, (1-q^j)/(1-q))* sum(k=0, n+2, (-1)^k*q^(k*(k-1)/2)/if(k==0, 1, prod(j=1, k, (1-q^j)/(1-q)))), n, q)}
CROSSREFS
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Jul 05 2008
STATUS
approved