login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A139755
Table of q-derangement numbers of type A, by rows.
4
1, 1, 1, 1, 2, 2, 2, 1, 1, 1, 3, 5, 7, 8, 8, 6, 4, 2, 1, 4, 9, 16, 24, 32, 37, 38, 35, 28, 20, 12, 6, 2, 1, 1, 5, 14, 30, 54, 86, 123, 160, 191, 210, 214, 202, 176, 141, 104, 69, 41, 21, 9, 3, 1, 6, 20, 50, 104, 190, 313, 473, 663, 868, 1068, 1240, 1362, 1417, 1398, 1307, 1157, 968
OFFSET
1,5
COMMENTS
This sequence is from Table 1.1 of Chen and Wang, p. 2. Abstract: We show that the distribution of the coefficients of the q-derangement numbers is asymptotically normal. We also show that this property holds for the q-derangement numbers of type B.
Number of terms in row n appears to be A084265(n+2). - N. J. A. Sloane, Jul 20 2008
T(n,k) is the number of derangements in the set S(n) of permutations of {1,2,...,n} having major index equal to k. Example: T(4,3)=2 because we have 4312 (descent positions 1 and 2) and 2341 (descent position 3). - Emeric Deutsch, May 04 2009
LINKS
William Y. C. Chen and David G. L. Wang, The Limiting Distributions of the Coefficients of the q-Derangement Number, arXiv:0806.2092 [math.CO], 2008.
FORMULA
T(n,k) = [q^k] { [n]_q! * Sum_{m=0..n} (-1)^m*q^(m(m-1)/2) / [m]_q! } for n>=2 and 1<k<M(n), where M(n) = number of terms in row n = n*(n-1)/2 - (n mod 2); here, the q-factorial of n is denoted [n]_q! = Product_{j=1..n} (1-q^j)/(1-q). - Paul D. Hanna, Jul 07 2008
From Paul D. Hanna, Jun 20 2009: (Start)
For row n>1, the sum over powers of the n-th root of unity = -1:
-1 = Sum_{k=1..n*(n-1)/2} T(n,k)*exp(2*Pi*I*k/n), where I^2=-1.
(End)
EXAMPLE
The table begins:
==============================================================================
k=...|.1.|.2.|.3.|..4.|..5.|..6.|..7.|..8.|..9.|.10.|.11.|.12.|.13.|.14.|.15.|
==============================================================================
n=2..|.1.|
n=3..|.1.|.1.|
n=4..|.1.|.2.|.2.|..2.|..1.|..1.|
n=5..|.1.|.3.|.5.|..7.|..8.|..8.|..6.|..4.|..2.|
n=6..|.1.|.4.|.9.|.16.|.24.|.32.|.37.|.38.|.35.|.28.|.20.|.12.|..6.|..2.|..1.|
===============================================================================
Number of terms in rows 2..22: [1,2,6,9,15,20,28,35,45,54,66,77,91,104,120,135,153,170,190,209,231].
From Paul D. Hanna, Jun 20 2009: (Start)
For row n=4, the sum over powers of I, a 4th root of unity, is:
1*I + 2*I^2 + 2*I^3 + 2*I^4 + 1*I^5 + 1*I^6 = -1. (End)
MATHEMATICA
T[n_, k_] := SeriesCoefficient[QFactorial[n, q] Sum[(-1)^m q^(m(m-1)/2)/ QFactorial[m, q], {m, 0, n}], {q, 0, k}];
Table[T[n, k], {n, 2, 8}, {k, 1, n(n-1)/2 - Mod[n, 2]}] // Flatten (* Jean-François Alcover, Jul 26 2018 *)
PROG
(PARI) T(n, k)=if(k<1 || k>n*(n-1)/2-(n%2), 0, polcoeff( prod(j=1, n, (1-q^j)/(1-q))*sum(k=0, n, (-1)^k*q^(k*(k-1)/2)/if(k==0, 1, prod(j =1, k, (1-q^j)/(1-q)))), k, q)) \\ Paul D. Hanna, Jul 07 2008
CROSSREFS
Cf. diagonals: A141753, A141754.
Sequence in context: A124278 A253187 A375763 * A213366 A212648 A255507
KEYWORD
nonn,tabf
AUTHOR
Jonathan Vos Post, Jun 13 2008
EXTENSIONS
More terms from Paul D. Hanna, Jul 07 2008
STATUS
approved