Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #23 Jul 26 2018 10:08:55
%S 1,1,1,1,2,2,2,1,1,1,3,5,7,8,8,6,4,2,1,4,9,16,24,32,37,38,35,28,20,12,
%T 6,2,1,1,5,14,30,54,86,123,160,191,210,214,202,176,141,104,69,41,21,9,
%U 3,1,6,20,50,104,190,313,473,663,868,1068,1240,1362,1417,1398,1307,1157,968
%N Table of q-derangement numbers of type A, by rows.
%C This sequence is from Table 1.1 of Chen and Wang, p. 2. Abstract: We show that the distribution of the coefficients of the q-derangement numbers is asymptotically normal. We also show that this property holds for the q-derangement numbers of type B.
%C Number of terms in row n appears to be A084265(n+2). - _N. J. A. Sloane_, Jul 20 2008
%C T(n,k) is the number of derangements in the set S(n) of permutations of {1,2,...,n} having major index equal to k. Example: T(4,3)=2 because we have 4312 (descent positions 1 and 2) and 2341 (descent position 3). - _Emeric Deutsch_, May 04 2009
%H Paul D. Hanna, <a href="/A139755/b139755.txt">Table of n, A139755(m,k), as a flattened table for rows m = 2..22</a>
%H William Y. C. Chen and David G. L. Wang, <a href="http://arxiv.org/abs/0806.2092">The Limiting Distributions of the Coefficients of the q-Derangement Number</a>, arXiv:0806.2092 [math.CO], 2008.
%F T(n,k) = [q^k] { [n]_q! * Sum_{m=0..n} (-1)^m*q^(m(m-1)/2) / [m]_q! } for n>=2 and 1<k<M(n), where M(n) = number of terms in row n = n*(n-1)/2 - (n mod 2); here, the q-factorial of n is denoted [n]_q! = Product_{j=1..n} (1-q^j)/(1-q). - _Paul D. Hanna_, Jul 07 2008
%F From _Paul D. Hanna_, Jun 20 2009: (Start)
%F For row n>1, the sum over powers of the n-th root of unity = -1:
%F -1 = Sum_{k=1..n*(n-1)/2} T(n,k)*exp(2*Pi*I*k/n), where I^2=-1.
%F (End)
%e The table begins:
%e ==============================================================================
%e k=...|.1.|.2.|.3.|..4.|..5.|..6.|..7.|..8.|..9.|.10.|.11.|.12.|.13.|.14.|.15.|
%e ==============================================================================
%e n=2..|.1.|
%e n=3..|.1.|.1.|
%e n=4..|.1.|.2.|.2.|..2.|..1.|..1.|
%e n=5..|.1.|.3.|.5.|..7.|..8.|..8.|..6.|..4.|..2.|
%e n=6..|.1.|.4.|.9.|.16.|.24.|.32.|.37.|.38.|.35.|.28.|.20.|.12.|..6.|..2.|..1.|
%e ===============================================================================
%e Number of terms in rows 2..22: [1,2,6,9,15,20,28,35,45,54,66,77,91,104,120,135,153,170,190,209,231].
%e From _Paul D. Hanna_, Jun 20 2009: (Start)
%e For row n=4, the sum over powers of I, a 4th root of unity, is:
%e 1*I + 2*I^2 + 2*I^3 + 2*I^4 + 1*I^5 + 1*I^6 = -1. (End)
%t T[n_, k_] := SeriesCoefficient[QFactorial[n, q] Sum[(-1)^m q^(m(m-1)/2)/ QFactorial[m, q], {m, 0, n}], {q, 0, k}];
%t Table[T[n, k], {n, 2, 8}, {k, 1, n(n-1)/2 - Mod[n, 2]}] // Flatten (* _Jean-François Alcover_, Jul 26 2018 *)
%o (PARI) T(n,k)=if(k<1 || k>n*(n-1)/2-(n%2),0,polcoeff( prod(j=1,n,(1-q^j)/(1-q))*sum(k=0,n,(-1)^k*q^(k*(k-1)/2)/if(k==0,1,prod(j =1,k,(1-q^j)/(1-q)))),k,q)) \\ _Paul D. Hanna_, Jul 07 2008
%Y Cf. A000166, A152290.
%Y Cf. diagonals: A141753, A141754.
%K nonn,tabf
%O 1,5
%A _Jonathan Vos Post_, Jun 13 2008
%E More terms from _Paul D. Hanna_, Jul 07 2008