login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A139756
Binomial transform of A004526.
6
0, 0, 1, 4, 12, 32, 80, 192, 448, 1024, 2304, 5120, 11264, 24576, 53248, 114688, 245760, 524288, 1114112, 2359296, 4980736, 10485760, 22020096, 46137344, 96468992, 201326592, 419430400, 872415232, 1811939328, 3758096384, 7784628224, 16106127360, 33285996544
OFFSET
0,4
COMMENTS
Essentially the same as A001787, A097067, A085750 and A118442.
Also: self-convolution of A131577. - R. J. Mathar, May 22 2008
Let S be a subset of {1,2,...,n}. A succession in S is a subset of the form {i,i+1}. a(n) is the total number of successions in all subsets of {1,2,...,n}. a(n) = Sum_{k>=1} A076791(n,k)*k. - Geoffrey Critzer, Mar 18 2012.
REFERENCES
I Goulden and D Jackson, Combinatorial Enumeration, John Wiley and Sons, 1983, page 55.
FORMULA
O.g.f.: x^2/(1-2*x)^2. a(n) = (n-1)*2^n/4 if n>0. - R. J. Mathar, May 22 2008
a(n) = A097067(n), n>0. - R. J. Mathar, Nov 03 2008
a(n) = A168511(n+1,n). - Philippe Deléham, Mar 20 2013
a(n) = 2*a(n-1) + 2^(n-2), n>=2. - Philippe Deléham, Mar 20 2013
EXAMPLE
a(4) = 12 because we have {1,2}, {2,3}, {3,4}, {1,2,4}, {1,3,4} with one succession; {1,2,3}, {2,3,4} with two successions; and {1,2,3,4} with three successions. - Geoffrey Critzer, Mar 18 2012.
MATHEMATICA
nn = 30; a = 1/(1 - y x); b = x/(1 - y x) + 1; c = 1/(1 - x); CoefficientList[ D[Series[c b/(1 - (a x^2 c)), {x, 0, nn}], y] /. y -> 1, x] (* Geoffrey Critzer, Mar 18 2012 *)
KEYWORD
nonn,easy
AUTHOR
Paul Curtz, May 19 2008
EXTENSIONS
More terms from R. J. Mathar, May 22 2008
STATUS
approved