OFFSET
0,4
COMMENTS
Also: self-convolution of A131577. - R. J. Mathar, May 22 2008
Let S be a subset of {1,2,...,n}. A succession in S is a subset of the form {i,i+1}. a(n) is the total number of successions in all subsets of {1,2,...,n}. a(n) = Sum_{k>=1} A076791(n,k)*k. - Geoffrey Critzer, Mar 18 2012.
REFERENCES
I Goulden and D Jackson, Combinatorial Enumeration, John Wiley and Sons, 1983, page 55.
LINKS
Vincenzo Librandi, Table of n, a(n) for n = 0..1000
Index entries for linear recurrences with constant coefficients, signature (4,-4).
FORMULA
O.g.f.: x^2/(1-2*x)^2. a(n) = (n-1)*2^n/4 if n>0. - R. J. Mathar, May 22 2008
a(n) = A097067(n), n>0. - R. J. Mathar, Nov 03 2008
a(n) = A168511(n+1,n). - Philippe Deléham, Mar 20 2013
a(n) = 2*a(n-1) + 2^(n-2), n>=2. - Philippe Deléham, Mar 20 2013
EXAMPLE
a(4) = 12 because we have {1,2}, {2,3}, {3,4}, {1,2,4}, {1,3,4} with one succession; {1,2,3}, {2,3,4} with two successions; and {1,2,3,4} with three successions. - Geoffrey Critzer, Mar 18 2012.
MATHEMATICA
nn = 30; a = 1/(1 - y x); b = x/(1 - y x) + 1; c = 1/(1 - x); CoefficientList[ D[Series[c b/(1 - (a x^2 c)), {x, 0, nn}], y] /. y -> 1, x] (* Geoffrey Critzer, Mar 18 2012 *)
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Paul Curtz, May 19 2008
EXTENSIONS
More terms from R. J. Mathar, May 22 2008
STATUS
approved