Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #29 May 06 2024 12:10:25
%S 0,0,1,4,12,32,80,192,448,1024,2304,5120,11264,24576,53248,114688,
%T 245760,524288,1114112,2359296,4980736,10485760,22020096,46137344,
%U 96468992,201326592,419430400,872415232,1811939328,3758096384,7784628224,16106127360,33285996544
%N Binomial transform of A004526.
%C Essentially the same as A001787, A097067, A085750 and A118442.
%C Also: self-convolution of A131577. - _R. J. Mathar_, May 22 2008
%C Let S be a subset of {1,2,...,n}. A succession in S is a subset of the form {i,i+1}. a(n) is the total number of successions in all subsets of {1,2,...,n}. a(n) = Sum_{k>=1} A076791(n,k)*k. - _Geoffrey Critzer_, Mar 18 2012.
%D I Goulden and D Jackson, Combinatorial Enumeration, John Wiley and Sons, 1983, page 55.
%H Vincenzo Librandi, <a href="/A139756/b139756.txt">Table of n, a(n) for n = 0..1000</a>
%H <a href="/index/Rec">Index entries for linear recurrences with constant coefficients</a>, signature (4,-4).
%F O.g.f.: x^2/(1-2*x)^2. a(n) = (n-1)*2^n/4 if n>0. - _R. J. Mathar_, May 22 2008
%F a(n) = A097067(n), n>0. - _R. J. Mathar_, Nov 03 2008
%F a(n) = A168511(n+1,n). - _Philippe Deléham_, Mar 20 2013
%F a(n) = 2*a(n-1) + 2^(n-2), n>=2. - _Philippe Deléham_, Mar 20 2013
%e a(4) = 12 because we have {1,2}, {2,3}, {3,4}, {1,2,4}, {1,3,4} with one succession; {1,2,3}, {2,3,4} with two successions; and {1,2,3,4} with three successions. - _Geoffrey Critzer_, Mar 18 2012.
%t nn = 30; a = 1/(1 - y x); b = x/(1 - y x) + 1; c = 1/(1 - x); CoefficientList[ D[Series[c b/(1 - (a x^2 c)), {x, 0, nn}], y] /. y -> 1, x] (* _Geoffrey Critzer_, Mar 18 2012 *)
%Y Cf. A001787, A004526, A076791, A085750, A097067, A118442, A131577, A168511.
%K nonn,easy
%O 0,4
%A _Paul Curtz_, May 19 2008
%E More terms from _R. J. Mathar_, May 22 2008