login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A141755
Product of two primes whose sum is a perfect square.
2
4, 14, 39, 46, 55, 94, 155, 158, 183, 203, 291, 295, 299, 323, 334, 446, 579, 583, 695, 718, 799, 878, 943, 955, 959, 979, 1191, 1255, 1411, 1454, 1678, 1703, 2019, 2059, 2159, 2174, 2219, 2395, 2419, 2446, 2491, 2734, 2855, 3043, 3063, 3443, 3459, 3503, 3694
OFFSET
1,1
LINKS
MATHEMATICA
Take[ Sort[ Times @@@ Select[ Subsets[ Array[ Prime, 290], {2}], IntegerQ[ Sqrt[ #[[2]] + #[[1]]]] &]], 48]
nn=4000; fQ[n_] := Module[{p, e}, If[n < 2, False, {p, e} = Transpose[FactorInteger[n]]; If[Total[e] != 2, False, IntegerQ[Sqrt[Total[p*e]]]]]]; Select[Range[nn], fQ] (* T. D. Noe, Mar 22 2012 *)
PROG
(Haskell)
a141755 n = a141755_list !! (n-1)
a141755_list = filter f a001358_list where
f x = a010052' (spf + x `div` spf) == 1 where spf = a020639 x
-- Reinhard Zumkeller, Apr 06 2015
CROSSREFS
KEYWORD
nonn
AUTHOR
David Spector (spectord(AT)ccsu.edu) and Robert G. Wilson v, Aug 31 2008
STATUS
approved