login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Product of two primes whose sum is a perfect square.
2

%I #10 Apr 06 2015 06:11:46

%S 4,14,39,46,55,94,155,158,183,203,291,295,299,323,334,446,579,583,695,

%T 718,799,878,943,955,959,979,1191,1255,1411,1454,1678,1703,2019,2059,

%U 2159,2174,2219,2395,2419,2446,2491,2734,2855,3043,3063,3443,3459,3503,3694

%N Product of two primes whose sum is a perfect square.

%H Reinhard Zumkeller, <a href="/A141755/b141755.txt">Table of n, a(n) for n = 1..1000</a>

%t Take[ Sort[ Times @@@ Select[ Subsets[ Array[ Prime, 290], {2}], IntegerQ[ Sqrt[ #[[2]] + #[[1]]]] &]], 48]

%t nn=4000; fQ[n_] := Module[{p, e}, If[n < 2, False, {p, e} = Transpose[FactorInteger[n]]; If[Total[e] != 2, False, IntegerQ[Sqrt[Total[p*e]]]]]]; Select[Range[nn], fQ] (* _T. D. Noe_, Mar 22 2012 *)

%o (Haskell)

%o a141755 n = a141755_list !! (n-1)

%o a141755_list = filter f a001358_list where

%o f x = a010052' (spf + x `div` spf) == 1 where spf = a020639 x

%o -- _Reinhard Zumkeller_, Apr 06 2015

%Y Cf. A000040, A000290, A143416.

%Y Cf. A001358, A020639, A010052.

%K nonn

%O 1,1

%A David Spector (spectord(AT)ccsu.edu) and _Robert G. Wilson v_, Aug 31 2008