OFFSET
0,4
LINKS
FORMULA
T(n,k) = Fibonacci(2*(n-k)-1) + k*Fibonacci(2*(n-k)) for 0<=k<=n.
EXAMPLE
Generating rule.
Given nonzero elements W, X, Y, Z, relatively arranged like so:
.. W .....
.. X Y ...
.... Z ...
then Z = (X*Y + 1)/W.
Triangle begins:
1;
1, 1;
2, 2, 1;
5, 5, 3, 1;
13, 13, 8, 4, 1;
34, 34, 21, 11, 5, 1;
89, 89, 55, 29, 14, 6, 1;
233, 233, 144, 76, 37, 17, 7, 1;
610, 610, 377, 199, 97, 45, 20, 8, 1;
1597, 1597, 987, 521, 254, 118, 53, 23, 9, 1;
4181, 4181, 2584, 1364, 665, 309, 139, 61, 26, 10, 1; ...
PROG
(PARI) T(n, k)=if(n<k || k<0, 0, if(n==k, 1, if(k==0, fibonacci(2*n-1), (T(n-1, k-1)*T(n-1, k)+1)/T(n-2, k-1))))
for(n=0, 12, for(k=0, n, print1(T(n, k), ", ")); print(""))
(PARI) T(n, k)=fibonacci(2*(n-k))*k+fibonacci(2*(n-k)-1)
for(n=0, 12, for(k=0, n, print1(T(n, k), ", ")); print(""))
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
Paul D. Hanna, Jul 04 2008
STATUS
approved