The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A299499 Triangle read by rows, T(n,k) = [x^k] Sum_{k=0..n} p_{n,k}(x) where p_{n,k}(x) = x^k*binomial(n, k)*hypergeom([-k, k-n, k-n], [1, -n], 1/x), for 0 <= k <= n. 2
1, 1, 1, 2, 2, 1, 5, 5, 3, 1, 11, 16, 9, 4, 1, 26, 44, 34, 14, 5, 1, 63, 122, 111, 60, 20, 6, 1, 153, 341, 351, 225, 95, 27, 7, 1, 376, 940, 1103, 796, 400, 140, 35, 8, 1, 931, 2581, 3384, 2764, 1561, 651, 196, 44, 9, 1, 2317, 7064, 10224, 9304, 5915, 2772, 994, 264, 54, 10, 1 (list; table; graph; refs; listen; history; text; internal format)
OFFSET
0,4
LINKS
FORMULA
Let P_{n}(x) = Sum_{k=0..n} p_{n,k}(x) then
2^n*P_{n}(1/2) = A298611(n).
P_{n}(-1) = A182883(n), P_{n}(0) = A051286(n).
P_{n}( 1) = A108626(n), P_{n}(2) = A299443(n).
The general case: for fixed k the sequence P_{n}(k) with n >= 0 has the generating function ogf(k, x) = (1-2*(k+1)*x + (k^2+2*k-1)*x^2 + 2*(k-1)*x^3 + x^4)^(-1/2). The example section shows the start of this square array of sequences.
These sequences can be computed by the recurrence P(n,k) = ((2-n)*P(n-4,k)+(3-2*n)*(k-1)*P(n-3,k)+(k^2+2*k-1)*(1-n)*P(n-2,k)+(2*n-1)*(k+1)*P(n-1,k))/n with initial values 1, k+1, (k+1)^2+1 and (k+1)^3+2*k+4.
The partial polynomials p_{n,k}(x) reduce for x = 1 to A108625 (seen as a triangle).
EXAMPLE
The partial polynomials p_{n,k}(x) start:
[0] 1
[1] 1, x
[2] 1, 2*x+ 1, x^2
[3] 1, 3*x+ 4, 3*x^2+ 2*x, x^3
[4] 1, 4*x+ 9, 6*x^2+12*x+1, 4*x^3+ 3*x^2, x^4
[5] 1, 5*x+16, 10*x^2+36*x+9, 10*x^3+24*x^2+3*x, 5*x^4+4*x^3, x^5
.
The polynomials P_{n}(x) start:
[0] 1
[1] 1 + x
[2] 2 + 2*x + x^2
[3] 5 + 5*x + 3*x^2 + x^3
[4] 11 + 16*x + 9*x^2 + 4*x^3 + x^4
[5] 26 + 44*x + 34*x^2 + 14*x^3 + 5*x^4 + x^5
.
The triangle starts:
[0] 1
[1] 1, 1
[2] 2, 2, 1
[3] 5, 5, 3, 1
[4] 11, 16, 9, 4, 1
[5] 26, 44, 34, 14, 5, 1
[6] 63, 122, 111, 60, 20, 6, 1
[7] 153, 341, 351, 225, 95, 27, 7, 1
[8] 376, 940, 1103, 796, 400, 140, 35, 8, 1
[9] 931, 2581, 3384, 2764, 1561, 651, 196, 44, 9, 1
.
The square array P_{n}(k) near k=0:
...... [k=-2] 1, -1, 2, -1, -1, 10, -25, 51, -68, 41, ...
A182883 [k=-1] 1, 0, 1, 2, 1, 6, 7, 12, 31, 40, ...
A051286 [k=0] 1, 1, 2, 5, 11, 26, 63, 153, 376, 931, ...
A108626 [k=1] 1, 2, 5, 14, 41, 124, 383, 1200, 3799, 12122, ...
A299443 [k=2] 1, 3, 10, 35, 127, 474, 1807, 6999, 27436, 108541, ...
...... [k=3] 1, 4, 17, 74, 329, 1490, 6855, 31956, 150607, 716236, ...
MAPLE
CoeffList := p -> op(PolynomialTools:-CoefficientList(p, x)):
PrintPoly := p -> print(sort(expand(p), x, ascending)):
T := (n, k) -> x^k*binomial(n, k)*hypergeom([-k, k-n, k-n], [1, -n], 1/x):
P := [seq(add(simplify(T(n, k)), k=0..n), n=0..10)]:
seq(CoeffList(p), p in P); seq(PrintPoly(p), p in P);
R := proc(n, k) option remember; # Recurrence
if n < 4 then return [1, k+1, (k+1)^2+1, (k+1)^3+2*k+4][n+1] fi; ((2-n)*R(n-4, k)+
(3-2*n)*(k-1)*R(n-3, k)+(k^2+2*k-1)*(1-n)*R(n-2, k)+(2*n-1)*(k+1)*R(n-1, k))/n end:
for k from -2 to 3 do lprint(seq(R(n, k), n=0..9)) od;
MATHEMATICA
nmax = 10;
p[n_, k_, x_] := x^k*Binomial[n, k]*HypergeometricPFQ[{-k, k-n, k-n}, {1, -n}, 1/x];
p[n_, x_] := Sum[p[n, k, x], {k, 0, n}];
Table[CoefficientList[p[n, x], x], {n, 0, nmax}] // Flatten (* Jean-François Alcover, Feb 26 2018 *)
CROSSREFS
Sequence in context: A114292 A333724 A178518 * A190215 A190252 A141751
KEYWORD
nonn,tabl
AUTHOR
Peter Luschny, Feb 11 2018
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 14 06:43 EDT 2024. Contains 372528 sequences. (Running on oeis4.)