login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A299499
Triangle read by rows, T(n,k) = [x^k] Sum_{k=0..n} p_{n,k}(x) where p_{n,k}(x) = x^k*binomial(n, k)*hypergeom([-k, k-n, k-n], [1, -n], 1/x), for 0 <= k <= n.
2
1, 1, 1, 2, 2, 1, 5, 5, 3, 1, 11, 16, 9, 4, 1, 26, 44, 34, 14, 5, 1, 63, 122, 111, 60, 20, 6, 1, 153, 341, 351, 225, 95, 27, 7, 1, 376, 940, 1103, 796, 400, 140, 35, 8, 1, 931, 2581, 3384, 2764, 1561, 651, 196, 44, 9, 1, 2317, 7064, 10224, 9304, 5915, 2772, 994, 264, 54, 10, 1
OFFSET
0,4
FORMULA
Let P_{n}(x) = Sum_{k=0..n} p_{n,k}(x) then
2^n*P_{n}(1/2) = A298611(n).
P_{n}(-1) = A182883(n), P_{n}(0) = A051286(n).
P_{n}( 1) = A108626(n), P_{n}(2) = A299443(n).
The general case: for fixed k the sequence P_{n}(k) with n >= 0 has the generating function ogf(k, x) = (1-2*(k+1)*x + (k^2+2*k-1)*x^2 + 2*(k-1)*x^3 + x^4)^(-1/2). The example section shows the start of this square array of sequences.
These sequences can be computed by the recurrence P(n,k) = ((2-n)*P(n-4,k)+(3-2*n)*(k-1)*P(n-3,k)+(k^2+2*k-1)*(1-n)*P(n-2,k)+(2*n-1)*(k+1)*P(n-1,k))/n with initial values 1, k+1, (k+1)^2+1 and (k+1)^3+2*k+4.
The partial polynomials p_{n,k}(x) reduce for x = 1 to A108625 (seen as a triangle).
EXAMPLE
The partial polynomials p_{n,k}(x) start:
[0] 1
[1] 1, x
[2] 1, 2*x+ 1, x^2
[3] 1, 3*x+ 4, 3*x^2+ 2*x, x^3
[4] 1, 4*x+ 9, 6*x^2+12*x+1, 4*x^3+ 3*x^2, x^4
[5] 1, 5*x+16, 10*x^2+36*x+9, 10*x^3+24*x^2+3*x, 5*x^4+4*x^3, x^5
.
The polynomials P_{n}(x) start:
[0] 1
[1] 1 + x
[2] 2 + 2*x + x^2
[3] 5 + 5*x + 3*x^2 + x^3
[4] 11 + 16*x + 9*x^2 + 4*x^3 + x^4
[5] 26 + 44*x + 34*x^2 + 14*x^3 + 5*x^4 + x^5
.
The triangle starts:
[0] 1
[1] 1, 1
[2] 2, 2, 1
[3] 5, 5, 3, 1
[4] 11, 16, 9, 4, 1
[5] 26, 44, 34, 14, 5, 1
[6] 63, 122, 111, 60, 20, 6, 1
[7] 153, 341, 351, 225, 95, 27, 7, 1
[8] 376, 940, 1103, 796, 400, 140, 35, 8, 1
[9] 931, 2581, 3384, 2764, 1561, 651, 196, 44, 9, 1
.
The square array P_{n}(k) near k=0:
...... [k=-2] 1, -1, 2, -1, -1, 10, -25, 51, -68, 41, ...
A182883 [k=-1] 1, 0, 1, 2, 1, 6, 7, 12, 31, 40, ...
A051286 [k=0] 1, 1, 2, 5, 11, 26, 63, 153, 376, 931, ...
A108626 [k=1] 1, 2, 5, 14, 41, 124, 383, 1200, 3799, 12122, ...
A299443 [k=2] 1, 3, 10, 35, 127, 474, 1807, 6999, 27436, 108541, ...
...... [k=3] 1, 4, 17, 74, 329, 1490, 6855, 31956, 150607, 716236, ...
MAPLE
CoeffList := p -> op(PolynomialTools:-CoefficientList(p, x)):
PrintPoly := p -> print(sort(expand(p), x, ascending)):
T := (n, k) -> x^k*binomial(n, k)*hypergeom([-k, k-n, k-n], [1, -n], 1/x):
P := [seq(add(simplify(T(n, k)), k=0..n), n=0..10)]:
seq(CoeffList(p), p in P); seq(PrintPoly(p), p in P);
R := proc(n, k) option remember; # Recurrence
if n < 4 then return [1, k+1, (k+1)^2+1, (k+1)^3+2*k+4][n+1] fi; ((2-n)*R(n-4, k)+
(3-2*n)*(k-1)*R(n-3, k)+(k^2+2*k-1)*(1-n)*R(n-2, k)+(2*n-1)*(k+1)*R(n-1, k))/n end:
for k from -2 to 3 do lprint(seq(R(n, k), n=0..9)) od;
MATHEMATICA
nmax = 10;
p[n_, k_, x_] := x^k*Binomial[n, k]*HypergeometricPFQ[{-k, k-n, k-n}, {1, -n}, 1/x];
p[n_, x_] := Sum[p[n, k, x], {k, 0, n}];
Table[CoefficientList[p[n, x], x], {n, 0, nmax}] // Flatten (* Jean-François Alcover, Feb 26 2018 *)
KEYWORD
nonn,tabl
AUTHOR
Peter Luschny, Feb 11 2018
STATUS
approved