The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A299501 Expansion of (1 - 6*x + 7*x^2 - 2*x^3 + x^4)^(-1/2). 1
 1, 3, 10, 37, 145, 588, 2437, 10251, 43582, 186785, 805585, 3492064, 15200753, 66399763, 290910490, 1277803957, 5625184321, 24811849020, 109631120869, 485153695995, 2149941422590, 9539307910561, 42374000475457, 188421560848512, 838633172823745, 3735857124917763 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS See A299500 for a family of related polynomials. LINKS Table of n, a(n) for n=0..25. FORMULA a(n) = Sum_{k=0..n} 2^(n-k)*binomial(n, k)*hypergeom([-k, k-n, k-n], [1, -n], 1/2). D-finite with recurrence: (-2+n)*a(-4+n) + (-2*n+3)*a(n-3) + (7*n-7)*a(-2+n) + (-6*n+3)*a(-1+n) + n*a(n) = 0. A249946(n) = a(n) - 2*a(n-1) + a(n-2) for n >= 2. MAPLE a := n -> add(2^(n-k)*binomial(n, k)*hypergeom([-k, k-n, k-n], [1, -n], 1/2), k=0..n): seq(simplify(a(n)), n=0..25); MATHEMATICA CoefficientList[Series[(1 - 6 x + 7 x^2 - 2 x^3 + x^4 )^(-1/2), {x, 0, 25}], x] CROSSREFS Cf. A249946, A299500. Sequence in context: A151054 A052893 A052818 * A226434 A151055 A151056 Adjacent sequences: A299498 A299499 A299500 * A299502 A299503 A299504 KEYWORD nonn AUTHOR Peter Luschny, Feb 15 2018 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified June 19 02:16 EDT 2024. Contains 373492 sequences. (Running on oeis4.)