login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A052818
Number of objects generated by the Combstruct grammar defined in the Maple program. See the link for the grammar specification.
2
0, 1, 1, 3, 10, 37, 144, 593, 2515, 10975, 48847, 221071, 1013886, 4702530, 22017327, 103925505, 494000139, 2362666375, 11361442399, 54898445359, 266417109839, 1297935216161, 6345598010686, 31123068382020, 153095423135329, 755103728856195, 3733557839325332
OFFSET
0,4
LINKS
C. G. Bower, Transforms (2).
FORMULA
G.f.: x/(1-g(x)) where g(x) is the g.f. of A052815. - Andrew Howroyd, Aug 10 2020
MAPLE
spec := [S, {C=Sequence(B), B=Cycle(S), S=Prod(C, Z)}, unlabeled]: seq(combstruct[count](spec, size=n), n=0..20);
PROG
(PARI) \\ CIK (necklace, indistinct, unlabeled) in Transforms (2).
CIK(p, n)={sum(d=1, n, eulerphi(d)/d*log(subst(1/(1+O(x*x^(n\d))-p), x, x^d)))}
seq(n)={my(p=O(x)); for(n=1, n, p=x/(1-CIK(p, n))); Vec(p, -(n+1))}
CROSSREFS
Cf. A052815.
Sequence in context: A151053 A151054 A052893 * A299501 A226434 A151055
KEYWORD
easy,nonn
AUTHOR
encyclopedia(AT)pommard.inria.fr, Jan 25 2000
EXTENSIONS
Terms a(21) and beyond from Andrew Howroyd, Aug 10 2020
STATUS
approved