login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A052819
E.g.f. equals the series reversion of x + x*log(1-x).
3
0, 1, 2, 15, 188, 3300, 74484, 2054864, 66998448, 2520581400, 107472778320, 5121576763512, 269759385873504, 15561785854196400, 975788232119245440, 66080957140527828480, 4806533577745476290304, 373724762062131412853760
OFFSET
0,3
FORMULA
E.g.f. satisfies: A(x + x*log(1-x)) = x. - Paul D. Hanna, Aug 28 2008
E.g.f. A(x) satisfies [from Paul D. Hanna, Jul 15 2012]:
(1) A(x) = x + Sum_{n>=1} d^(n-1)/dx^(n-1) x^n*(-log(1-x))^n/n!.
(2) A(x) = x*exp( Sum_{n>=1} d^(n-1)/dx^(n-1) x^(n-1)*(-log(1-x))^n/n! ).
a(n) = Sum_{k=0..n-1} k!*(-1)^(n+k-1)*Stirling1(n-1,k)*binomial(n+k-1,n-1). - Vladimir Kruchinin, Feb 01 2012
Lim_{n->infinity} a(n)^(1/n)/n = (1+r)*(2+r)/exp(1) = 1.84542896220833..., where r = 0.794862961852611133... is the root of the equation (1+r)*(r+LambertW(-1,-r*exp(-r))) = -r. - Vaclav Kotesovec, Sep 24 2013
EXAMPLE
E.g.f.: A(x) = x + 2*x^2/2! + 15*x^3/3! + 188*x^4/4! + 3300*x^5/5! + ...
where A(x) = x - A(x)*log(1-A(x)).
The e.g.f. satisfies [from Paul D. Hanna, Jul 15 2012]:
(1) A(x) = x - x*log(1-x) + d/dx x^2*log(1-x)^2/2! - d^2/dx^2 x^3*log(1-x)^3/3! + d^3/dx^3 x^4*log(1-x)^4/4! + ...
(2) log(A(x)/x) = -log(1-x) + d/dx x*log(1-x)^2/2! - d^2/dx^2 x^2*log(1-x)^3/3! + d^3/dx^3 x^3*log(1-x)^4/4! + ...
MAPLE
spec := [S, {C=Sequence(B), B=Cycle(S), S=Prod(C, Z)}, labeled]: seq(combstruct[count](spec, size=n), n=0..20);
MATHEMATICA
Flatten[{0, Table[Sum[k!*Abs[StirlingS1[n-1, k]]*Binomial[n+k-1, n-1], {k, 0, n-1}], {n, 1, 20}]}] (* Vaclav Kotesovec, Sep 24 2013 *)
(1+r)*(2+r)/E/.FindRoot[(1+r)*(r+LambertW[-1, -E^(-r)*r]) == -r, {r, 1/2}, WorkingPrecision->50] (* program for numerical value of the limit n->infinity a(n)^(1/n)/n, Vaclav Kotesovec, Sep 24 2013 *)
PROG
(PARI) a(n)=n!*polcoeff(serreverse(x+x*log(1-x +x*O(x^n))), n) \\ Paul D. Hanna, Aug 28 2008
(Maxima) a(n):=(sum(k!*(-1)^(n+k-1)*stirling1(n-1, k)*binomial(n+k-1, n-1), k, 0, n-1)); /* Vladimir Kruchinin, Feb 01 2012 */
(PARI) {Dx(n, F)=local(D=F); for(i=1, n, D=deriv(D)); D}
{a(n)=local(A=x); A=x+sum(m=1, n, Dx(m-1, x^m*(-log(1-x+x*O(x^n)))^m/m!)); n!*polcoeff(A, n)} \\ Paul D. Hanna, Jul 15 2012
(PARI) {Dx(n, F)=local(D=F); for(i=1, n, D=deriv(D)); D}
{a(n)=local(A=x+x^2+x*O(x^n)); A=x*exp(sum(m=1, n, Dx(m-1, x^(m-1)*(-log(1-x+x*O(x^n)))^m/m!)+x*O(x^n))); n!*polcoeff(A, n)} \\ Paul D. Hanna, Jul 15 2012
CROSSREFS
Cf. A052802. - Paul D. Hanna, Aug 28 2008
Sequence in context: A268420 A208402 A098343 * A349292 A328121 A374866
KEYWORD
easy,nonn
AUTHOR
encyclopedia(AT)pommard.inria.fr, Jan 25 2000
STATUS
approved