login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A226434
The number of sum decomposable permutations which avoid the patterns 3124 and 4312.
1
0, 1, 3, 10, 37, 146, 595, 2456, 10167, 42027, 173201, 711397, 2912633, 11891030, 48425597, 196790382, 798251109, 3232928429, 13075849791, 52825304031, 213196622183, 859690304703, 3463979709111, 13948292729231, 56132430446203, 225778880966297, 907726113188331, 3647961305524521, 14655086058873287, 58855311286307572
OFFSET
1,3
LINKS
FORMULA
G.f.: -(8*x^5 - 16*x^4 + 19*x^3 - 8*x^2 - sqrt(-4*x + 1)*(2*x^4 + x^3 - 4*x^2 + x) + x)/(12*x^4 - 31*x^3 + 27*x^2 + sqrt(-4*x + 1)*(4*x^4 - 13*x^3 + 15*x^2 - 7*x + 1) - 9*x + 1)
Conjecture: +(95*n+537)*(n+2)*a(n) +(95*n^2-16421*n-14748) *a(n-1) +(-6403*n^2+124495*n-60066) *a(n-2) +(21565*n^2-354883*n+596496) *a(n-3) +2*(-5092*n^2+138877*n-395970) *a(n-4) +8*(-2470*n^2+11113*n+12744) *a(n-5) +192*(38*n-67)*(2*n-13)*a(n-6)=0. - R. J. Mathar, Jun 14 2016
EXAMPLE
Example: a(4)=10 because there are 10 sum decomposable permutations of length 4 which avoid the patterns 3124 and 4312.
CROSSREFS
Sequence in context: A052893 A052818 A299501 * A151055 A151056 A109081
KEYWORD
nonn
AUTHOR
Jay Pantone, Sep 03 2013
STATUS
approved