login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A298611
Expansion of (1 - 6*x + x^2 - 8*x^3 + 16*x^4)^(-1/2).
2
1, 3, 13, 67, 349, 1875, 10285, 57123, 320317, 1809587, 10283149, 58714627, 336579101, 1935878419, 11166265837, 64566715363, 374148669949, 2172215118963, 12632572359757, 73575490895043, 429102329027293, 2505638311638739, 14647279574704045, 85710562407867555
OFFSET
0,2
COMMENTS
See A299499 for a family of related polynomials.
FORMULA
a(n) = Sum_{k=0..n} 2^(n-k)*binomial(n,k)*hypergeom([-k, k-n, k-n], [1, -n], 2).
D-finite with recurrence: (16*n-32)*a(n-4) + (-8*n+12)*a(n-3) + (n-1)*a(n-2) + (-6*n+3)*a(n-1) + n*a(n) = 0.
MAPLE
a := n -> add(2^(n-k)*binomial(n, k)*hypergeom([-k, k-n, k-n], [1, -n], 2), k=0..n): seq(simplify(a(n)), n=0..23);
MATHEMATICA
CoefficientList[Series[(1 - 6 x + x^2 - 8 x^3 + 16 x^4)^(-1/2), {x, 0, 23}], x]
CROSSREFS
Sequence in context: A201713 A343204 A333083 * A136784 A284717 A027277
KEYWORD
nonn
AUTHOR
Peter Luschny, Feb 15 2018
STATUS
approved