The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A298611 Expansion of (1 - 6*x + x^2 - 8*x^3 + 16*x^4)^(-1/2). 2
 1, 3, 13, 67, 349, 1875, 10285, 57123, 320317, 1809587, 10283149, 58714627, 336579101, 1935878419, 11166265837, 64566715363, 374148669949, 2172215118963, 12632572359757, 73575490895043, 429102329027293, 2505638311638739, 14647279574704045, 85710562407867555 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS See A299499 for a family of related polynomials. LINKS FORMULA a(n) = Sum_{k=0..n} 2^(n-k)*binomial(n,k)*hypergeom([-k, k-n, k-n], [1, -n], 2). D-finite with recurrence: (16*n-32)*a(n-4) + (-8*n+12)*a(n-3) + (n-1)*a(n-2) + (-6*n+3)*a(n-1) + n*a(n) = 0. MAPLE a := n -> add(2^(n-k)*binomial(n, k)*hypergeom([-k, k-n, k-n], [1, -n], 2), k=0..n): seq(simplify(a(n)), n=0..23); MATHEMATICA CoefficientList[Series[(1 - 6 x + x^2 - 8 x^3 + 16 x^4)^(-1/2), {x, 0, 23}], x] CROSSREFS Cf. A299499, A299502. Sequence in context: A302303 A201713 A333083 * A136784 A284717 A027277 Adjacent sequences:  A298608 A298609 A298610 * A298612 A298613 A298614 KEYWORD nonn AUTHOR Peter Luschny, Feb 15 2018 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified April 6 12:19 EDT 2020. Contains 333273 sequences. (Running on oeis4.)