login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A343204
Numerators of coefficients in expansion of Product_{k>=1} (1 + x^k)^(1/2).
0
1, 1, 3, 13, 67, 239, 1031, 2501, 36579, 109915, 468653, 1043851, 9395751, 21232827, 97493519, 235880373, 7717800611, 17385733651, 82456426833, 175398844079, 1578297716013, 3634938193489, 15867173716609, 34517119775523, 619312307079687, 1363237700933583
OFFSET
0,3
FORMULA
a(n) / A046161(n) ~ exp(sqrt(n/6)*Pi) / (4*3^(1/4)*n^(3/4)). - Vaclav Kotesovec, Apr 12 2021
EXAMPLE
1, 1/2, 3/8, 13/16, 67/128, 239/256, 1031/1024, 2501/2048, 36579/32768, 109915/65536, 468653/262144, 1043851/524288, ...
MAPLE
b:= proc(n) option remember; `if`(n=0, 1, add(b(n-j)*add(
`if`(d::odd, d/2, 0), d=numtheory[divisors](j)), j=1..n)/n)
end:
a:= n-> numer(b(n)):
seq(a(n), n=0..25); # Alois P. Heinz, Apr 12 2021
MATHEMATICA
nmax = 25; CoefficientList[Series[Product[(1 + x^k)^(1/2), {k, 1, nmax}], {x, 0, nmax}], x] // Numerator
a[n_] := a[n] = If[n == 0, 1, (1/(2 n)) Sum[Sum[Mod[d, 2] d, {d, Divisors[k]}] a[n - k], {k, 1, n}]]; Table[a[n], {n, 0, 25}] // Numerator
CROSSREFS
Cf. A000009, A022567, A046161 (denominators), A061159, A098987.
Sequence in context: A142979 A302303 A201713 * A333083 A298611 A136784
KEYWORD
nonn,frac
AUTHOR
Ilya Gutkovskiy, Apr 07 2021
STATUS
approved