login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A055267
a(n) = 3*a(n-1) - a(n-2) with a(0)=1, a(1)=7.
4
1, 7, 20, 53, 139, 364, 953, 2495, 6532, 17101, 44771, 117212, 306865, 803383, 2103284, 5506469, 14416123, 37741900, 98809577, 258686831, 677250916, 1773065917, 4641946835, 12152774588, 31816376929, 83296356199, 218072691668, 570921718805, 1494692464747
OFFSET
0,2
REFERENCES
A. H. Beiler, Recreations in the Theory of Numbers, Dover, N.Y., 1964, pp. 122-125, 194-196.
LINKS
I. Adler, Three Diophantine equations - Part II, Fib. Quart., 7 (1969), pp. 181-193.
E. I. Emerson, Recurrent Sequences in the Equation DQ^2=R^2+N, Fib. Quart., 7 (1969), pp. 231-242.
Tanya Khovanova, Recursive Sequences
FORMULA
a(n) = (7*(((3 + sqrt(5))/2)^n - ((3 - sqrt(5))/2)^n) - (((3 + sqrt(5))/2)^(n - 1) - ((3 - sqrt(5))/2)^(n - 1)))/sqrt(5).
G.f.: (1 + 4*x)/(1 - 3*x + x^2).
From Rigoberto Florez, Dec 24 2018: (Start)
a(n) = 5*Fibonacci(2*n) + Fibonacci(2*n+1).
a(n) = 4*Fibonacci(2*n - 1) + 3*Lucas(2*n - 1). (End)
E.g.f.: exp(3*t/2)*( cosh(sqrt(5)*t/2) + (11/sqrt(5))*sinh(sqrt(5)*t/2) ). - G. C. Greubel, Jan 17 2020
a(n) = 4*A001906(n) + A001906(n+1). - R. J. Mathar, Mar 06 2022
MAPLE
with(combinat); seq(fibonacci(2*n+2) +4*fibonacci(2*n), n=0..30); # G. C. Greubel, Jan 17 2020
MATHEMATICA
Table[5*Fibonacci[2n] + Fibonacci[2n+1], {n, 0, 30}]
Table[4*Fibonacci[2n-1] + 3*LucasL[2n-1], {n, 0, 30}] (* Rigoberto Florez, Dec 24 2018 *)
LinearRecurrence[{3, -1}, {1, 7}, 30] (* Vincenzo Librandi, Dec 25 2018 *)
PROG
(PARI) Vec((1+4*x)/(1-3*x+x^2) + O(x^40)) \\ Michel Marcus, Sep 06 2017
(Magma) [5*Fibonacci(2*n) + Fibonacci(2*n+1): n in [0..30]]; // Vincenzo Librandi, Dec 25 2018
(Sage) [fibonacci(2*n+2) +4*fibonacci(2*n) for n in (0..30)] # G. C. Greubel, Jan 17 2020
(GAP) List([0..30], n-> Fibonacci(2*n+2) +4*Fibonacci(2*n) ); # G. C. Greubel, Jan 17 2020
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Barry E. Williams, May 09 2000
STATUS
approved