login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = 3*a(n-1) - a(n-2) with a(0)=1, a(1)=7.
4

%I #49 Sep 08 2022 08:45:01

%S 1,7,20,53,139,364,953,2495,6532,17101,44771,117212,306865,803383,

%T 2103284,5506469,14416123,37741900,98809577,258686831,677250916,

%U 1773065917,4641946835,12152774588,31816376929,83296356199,218072691668,570921718805,1494692464747

%N a(n) = 3*a(n-1) - a(n-2) with a(0)=1, a(1)=7.

%D A. H. Beiler, Recreations in the Theory of Numbers, Dover, N.Y., 1964, pp. 122-125, 194-196.

%H Vincenzo Librandi, <a href="/A055267/b055267.txt">Table of n, a(n) for n = 0..1000</a>

%H I. Adler, <a href="http://www.fq.math.ca/Scanned/7-2/adler.pdf">Three Diophantine equations - Part II</a>, Fib. Quart., 7 (1969), pp. 181-193.

%H E. I. Emerson, <a href="http://www.fq.math.ca/Scanned/7-3/emerson.pdf">Recurrent Sequences in the Equation DQ^2=R^2+N</a>, Fib. Quart., 7 (1969), pp. 231-242.

%H Tanya Khovanova, <a href="http://www.tanyakhovanova.com/RecursiveSequences/RecursiveSequences.html">Recursive Sequences</a>

%H <a href="/index/Rec#order_02">Index entries for linear recurrences with constant coefficients</a>, signature (3,-1).

%F a(n) = (7*(((3 + sqrt(5))/2)^n - ((3 - sqrt(5))/2)^n) - (((3 + sqrt(5))/2)^(n - 1) - ((3 - sqrt(5))/2)^(n - 1)))/sqrt(5).

%F G.f.: (1 + 4*x)/(1 - 3*x + x^2).

%F From _Rigoberto Florez_, Dec 24 2018: (Start)

%F a(n) = 5*Fibonacci(2*n) + Fibonacci(2*n+1).

%F a(n) = 4*Fibonacci(2*n - 1) + 3*Lucas(2*n - 1). (End)

%F E.g.f.: exp(3*t/2)*( cosh(sqrt(5)*t/2) + (11/sqrt(5))*sinh(sqrt(5)*t/2) ). - _G. C. Greubel_, Jan 17 2020

%F a(n) = 4*A001906(n) + A001906(n+1). - _R. J. Mathar_, Mar 06 2022

%p with(combinat); seq(fibonacci(2*n+2) +4*fibonacci(2*n), n=0..30); # _G. C. Greubel_, Jan 17 2020

%t Table[5*Fibonacci[2n] + Fibonacci[2n+1], {n, 0, 30}]

%t Table[4*Fibonacci[2n-1] + 3*LucasL[2n-1], {n, 0, 30}] (* _Rigoberto Florez_, Dec 24 2018 *)

%t LinearRecurrence[{3,-1}, {1,7}, 30] (* _Vincenzo Librandi_, Dec 25 2018 *)

%o (PARI) Vec((1+4*x)/(1-3*x+x^2) + O(x^40)) \\ _Michel Marcus_, Sep 06 2017

%o (Magma) [5*Fibonacci(2*n) + Fibonacci(2*n+1): n in [0..30]]; // _Vincenzo Librandi_, Dec 25 2018

%o (Sage) [fibonacci(2*n+2) +4*fibonacci(2*n) for n in (0..30)] # _G. C. Greubel_, Jan 17 2020

%o (GAP) List([0..30], n-> Fibonacci(2*n+2) +4*Fibonacci(2*n) ); # _G. C. Greubel_, Jan 17 2020

%Y Cf. A000032, A000045, A054486, A054492.

%K easy,nonn

%O 0,2

%A _Barry E. Williams_, May 09 2000