login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A209546
1/4 the number of (n+1) X 2 0..3 arrays with every 2 X 2 subblock having exactly two distinct clockwise edge differences.
1
7, 20, 61, 191, 603, 1909, 6049, 19173, 60777, 192665, 610761, 1936161, 6137793, 19457329, 61681409, 195535393, 619864097, 1965022785, 6229292161, 19747394881, 62600949633, 198450424449, 629105008769, 1994317286913, 6322158281217
OFFSET
1,1
COMMENTS
Column 1 of A209553.
LINKS
FORMULA
Empirical: a(n) = 5*a(n-1) - 6*a(n-2) + 2*a(n-4).
Empirical g.f.: x*(7 - 15*x + 3*x^2 + 6*x^3) / ((1 - x)*(1 - 4*x + 2*x^2 + 2*x^3)). - Colin Barker, Jul 11 2018
EXAMPLE
Some solutions for n=4:
..0..1....0..1....3..2....3..0....2..3....0..2....0..1....1..3....1..2....0..1
..3..2....1..2....0..1....0..3....3..2....2..0....3..2....3..1....0..1....1..2
..0..1....2..1....1..2....1..2....2..3....0..2....2..1....1..3....1..2....0..3
..3..2....1..2....0..1....2..3....3..2....2..0....1..2....3..1....2..3....3..0
..2..3....0..1....1..0....1..2....2..3....0..2....2..1....1..3....3..2....2..1
CROSSREFS
Cf. A209553.
Sequence in context: A055267 A218843 A219422 * A222549 A196584 A301777
KEYWORD
nonn
AUTHOR
R. H. Hardin, Mar 10 2012
STATUS
approved