login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A209553
T(n,k)=1/4 the number of (n+1)X(k+1) 0..3 arrays with every 2X2 subblock having exactly two distinct clockwise edge differences
9
7, 20, 20, 61, 105, 61, 191, 562, 562, 191, 603, 3051, 5075, 3051, 603, 1909, 16582, 46515, 46515, 16582, 1909, 6049, 90186, 425803, 723636, 425803, 90186, 6049, 19173, 490547, 3901194, 11226644, 11226644, 3901194, 490547, 19173, 60777, 2668340
OFFSET
1,1
COMMENTS
Table starts
.....7......20........61.........191...........603............1909
....20.....105.......562........3051.........16582...........90186
....61.....562......5075.......46515........425803.........3901194
...191....3051.....46515......723636......11226644.......174401424
...603...16582....425803....11226644.....294738262......7751834609
..1909...90186...3901194...174401424....7751834609....345350598642
..6049..490547..35741496..2708892873..203828058161..15380031974285
.19173.2668340.327471411.42079740150.5360172454106.685056630399243
LINKS
EXAMPLE
Some solutions for n=4 k=3
..0..2..0..2....0..3..2..3....3..2..3..0....1..0..3..0....0..1..2..1
..2..0..2..0....1..2..3..2....2..3..2..1....2..3..0..3....3..2..1..0
..0..2..0..2....2..1..2..1....1..0..1..2....1..2..1..2....0..1..2..1
..2..0..2..0....3..0..1..0....0..1..2..1....2..1..0..3....3..2..3..0
..0..2..0..2....2..1..2..1....3..2..3..2....1..2..3..0....0..1..2..1
CROSSREFS
Sequence in context: A301808 A128817 A284897 * A037005 A022419 A070413
KEYWORD
nonn,tabl
AUTHOR
R. H. Hardin Mar 10 2012
STATUS
approved