login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A209550
1/4 the number of (n+1)X6 0..3 arrays with every 2X2 subblock having exactly two distinct clockwise edge differences
1
603, 16582, 425803, 11226644, 294738262, 7751834609, 203828058161, 5360172454106, 140957350430162, 3706813750652671, 97479558034241355, 2563460619809141337, 67412393287628933367, 1772771930441706450686
OFFSET
1,1
COMMENTS
Column 5 of A209553
LINKS
FORMULA
Empirical: a(n) = 52*a(n-1) -856*a(n-2) +4014*a(n-3) +34244*a(n-4) -455004*a(n-5) +1232892*a(n-6) +6401520*a(n-7) -47507560*a(n-8) +64609279*a(n-9) +283015278*a(n-10) -991731422*a(n-11) -25138511*a(n-12) +4334710815*a(n-13) -4388934859*a(n-14) -8391654500*a(n-15) +15874524375*a(n-16) +6183586137*a(n-17) -26768058473*a(n-18) +3068141187*a(n-19) +25533122171*a(n-20) -9123208293*a(n-21) -14680808558*a(n-22) +7130958556*a(n-23) +5229264986*a(n-24) -2809641978*a(n-25) -1165852380*a(n-26) +598144917*a(n-27) +161163696*a(n-28) -66836588*a(n-29) -13174080*a(n-30) +3588829*a(n-31) +586993*a(n-32) -75654*a(n-33) -11622*a(n-34) +320*a(n-35) +76*a(n-36) +2*a(n-37)
EXAMPLE
Some solutions for n=4
..0..3..0..1..0..3....0..2..0..2..0..2....1..0..1..0..1..2....3..2..1..0..3..0
..1..2..1..2..1..2....2..0..2..0..2..0....0..1..2..1..2..3....2..1..0..1..2..1
..2..3..2..1..0..1....0..2..0..2..0..2....1..2..3..2..3..2....3..0..1..2..3..0
..3..2..3..2..1..2....2..0..2..0..2..0....2..3..2..1..0..1....0..3..2..3..2..1
..2..3..2..1..0..3....0..2..0..2..0..2....3..2..1..2..1..0....3..0..1..2..3..2
CROSSREFS
Sequence in context: A107256 A177685 A250907 * A151626 A031792 A020383
KEYWORD
nonn
AUTHOR
R. H. Hardin Mar 10 2012
STATUS
approved