The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A151626 Number of permutations of 2 indistinguishable copies of 1..n with exactly 4 adjacent element pairs in decreasing order. 2
 0, 0, 1, 603, 47290, 1822014, 49258935, 1086859301, 21147576440, 379269758400, 6441229796061, 105398150289775, 1680774708581766, 26324724399068626, 407112461900381715, 6239897666881158537, 95036195852840662820, 1440959515956284422196, 21778829725476446172249 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,4 LINKS Andrew Howroyd, Table of n, a(n) for n = 1..200 Index entries for linear recurrences with constant coefficients, signature (70,-2163,39122,-462914,3792972,-22214806,94629124, -295393077,675442494,-1122134391,1331169066,-1093400856,588623760,-186332400, 26244000). FORMULA a(n) = 15^n - (2*n + 1)*10^n + binomial(2*n+1, 2)*6^n - binomial(2*n+1, 3)*3^n + binomial(2*n+1, 4). - Andrew Howroyd, May 07 2020 From G. C. Greubel, Sep 07 2022: (Start) G.f.: x^3*(1 + 533*x + 7243*x^2 - 223119*x^3 + 878573*x^4 + 5014923*x^5 - 40074183*x^6 + 75062403*x^7 + 19732086*x^8 - 185394420*x^9 + 117543960*x^10 + 43740000*x^11)/((1-x)^5*(1-3*x)^4*(1-6*x)^3*(1-10*x)^2*(1-15*x)). E.g.f.: exp(15*x) - (1+20*x)*exp(10*x) + 18*x*(1+4*x)*exp(6*x) - 3*x*(1 + 12*x + 12*x^2)*exp(3*x) + (x^2/6)*(15 + 20*x + 4*x^2)*exp(x). (End) MATHEMATICA With[{B=Binomial}, Table[Sum[(-1)^(j+1)*B[2n+1, 5-j]*B[j+1, 2]^n, {j, 5}], {n, 30}]] (* G. C. Greubel, Sep 07 2022 *) PROG (PARI) a(n) = {15^n - (2*n + 1)*10^n + binomial(2*n+1, 2)*6^n - binomial(2*n+1, 3)*3^n + binomial(2*n+1, 4) } \\ Andrew Howroyd, May 07 2020 (Magma) A151626:= func< n | (&+[(-1)^(j+1)*Binomial(2*n+1, 5-j)*Binomial(j+1, 2)^n: j in [1..5]]) >; [A151626(n): n in [1..30]]; // G. C. Greubel, Sep 07 2022 (SageMath) @CachedFunction def A151626(n): return sum((-1)^(j+1)*binomial(2*n+1, 5-j)*binomial(j+1, 2)^n for j in (1..5)) [A151626(n) for n in (1..30)] # G. C. Greubel, Sep 07 2022 CROSSREFS Column k=4 of A154283. Sequence in context: A177685 A250907 A209550 * A031792 A020383 A234109 Adjacent sequences: A151623 A151624 A151625 * A151627 A151628 A151629 KEYWORD nonn AUTHOR R. H. Hardin, May 29 2009 EXTENSIONS Terms a(12) and beyond from Andrew Howroyd, May 07 2020 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified March 31 20:59 EDT 2023. Contains 361673 sequences. (Running on oeis4.)