login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A048755
Partial sums of A048693.
0
1, 7, 20, 52, 129, 315, 764, 1848, 4465, 10783, 26036, 62860, 151761, 366387, 884540, 2135472, 5155489, 12446455, 30048404, 72543268, 175134945, 422813163, 1020761276, 2464335720, 5949432721, 14363201167, 34675835060, 83714871292, 202105577649, 487926026595
OFFSET
0,2
FORMULA
a(n)=2*a(n-1)+a(n-2)+5; a(0)=1, a(1)=6.
a(n)=[ {(6+(7/2)*sqrt(2))(1+sqrt(2))^n - (6-(7/2)*sqrt(2))(1-sqrt(2))^n}/ 2*sqrt(2) ]-5/2.
G.f. ( 1+4*x ) / ( (x-1)*(x^2+2*x-1) ). - R. J. Mathar, Nov 08 2012
a(0)=1, a(1)=7, a(2)=20, a(n)=3*a(n-1)-a(n-2)-a(n-3). - Harvey P. Dale, Mar 29 2013
MATHEMATICA
Accumulate[LinearRecurrence[{2, 1}, {1, 6}, 30]] (* or *) LinearRecurrence[ {3, -1, -1}, {1, 7, 20}, 40] (* Harvey P. Dale, Mar 29 2013 *)
CROSSREFS
KEYWORD
easy,nonn
EXTENSIONS
More terms from Harvey P. Dale, Mar 29 2013
STATUS
approved