This site is supported by donations to The OEIS Foundation.

 Annual Appeal: Please make a donation to keep the OEIS running. In 2018 we replaced the server with a faster one, added 20000 new sequences, and reached 7000 citations (often saying "discovered thanks to the OEIS"). Other ways to donate

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A048693 Generalized Pellian with 2nd term equal to 6. 4
 1, 6, 13, 32, 77, 186, 449, 1084, 2617, 6318, 15253, 36824, 88901, 214626, 518153, 1250932, 3020017, 7290966, 17601949, 42494864, 102591677, 247678218, 597948113, 1443574444, 3485097001, 8413768446 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS Pisano period lengths: 1, 2, 8, 4, 12, 8, 6, 8, 24, 12, 24, 8, 28, 6, 24, 16, 16, 24, 40, 12, ... (is this A175181?). - R. J. Mathar, Aug 10 2012 LINKS Tanya Khovanova, Recursive Sequences Index entries for linear recurrences with constant coefficients, signature (2,1) FORMULA a(n) = 2*a(n-1) + a(n-2); a(0)=1, a(1)=6. G.f.: (1+4*x)/(1 - 2*x - x^2). - Philippe Deléham, Nov 03 2008 a(n) = 4*A000129(n) + A000129(n+1). - R. J. Mathar, Aug 10 2012 EXAMPLE a(n)=[ (5+sqrt(2))(1+sqrt(2))^n-(5-sqrt(2))(1-sqrt(2))^n ]/2*sqrt(2) MAPLE with(combinat): a:=n->4*fibonacci(n-1, 2)+fibonacci(n, 2): seq(a(n), n=1..26); # Zerinvary Lajos, Apr 04 2008 MATHEMATICA a[n_]:=(MatrixPower[{{1, 2}, {1, 1}}, n].{{5}, {1}})[[2, 1]]; Table[a[n], {n, 0, 40}] (* Vladimir Joseph Stephan Orlovsky, Feb 20 2010 *) LinearRecurrence[{2, 1}, {1, 6}, 30] (* Harvey P. Dale, Mar 29 2013 *) PROG (Maxima) a[0]:1\$ a[1]:6\$ a[n]:=2*a[n-1]+a[n-2]\$ A048693(n):=a[n]\$ makelist(A048693(n), n, 0, 30); /* Martin Ettl, Nov 03 2012 */ CROSSREFS Cf. A001333, A000129, A048654, A048655. Sequence in context: A192304 A147330 A042607 * A041068 A300430 A300634 Adjacent sequences:  A048690 A048691 A048692 * A048694 A048695 A048696 KEYWORD easy,nonn AUTHOR STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 12 16:06 EST 2018. Contains 318077 sequences. (Running on oeis4.)