|
|
A048695
|
|
Generalized Pellian with second term equal to 8.
|
|
2
|
|
|
1, 8, 17, 42, 101, 244, 589, 1422, 3433, 8288, 20009, 48306, 116621, 281548, 679717, 1640982, 3961681, 9564344, 23090369, 55745082, 134580533, 324906148, 784392829, 1893691806, 4571776441, 11037244688
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,2
|
|
LINKS
|
Table of n, a(n) for n=0..25.
Tanya Khovanova, Recursive Sequences
Index entries for linear recurrences with constant coefficients, signature (2,1)
|
|
FORMULA
|
a(n) = 2*a(n-1) + a(n-2); a(0)=1, a(1)=8.
a(n) = ((7+sqrt(2))(1+sqrt(2))^n - (7-sqrt(2))(1-sqrt(2))^n)/2*sqrt(2).
G.f.: (1+6*x)/(1 - 2*x - x^2). - Philippe Deléham, Nov 03 2008
|
|
MAPLE
|
with(combinat): a:=n->6*fibonacci(n-1, 2)+fibonacci(n, 2): seq(a(n), n=1..26); # Zerinvary Lajos, Apr 04 2008
|
|
MATHEMATICA
|
a[n_]:=(MatrixPower[{{1, 2}, {1, 1}}, n].{{7}, {1}})[[2, 1]]; Table[a[n], {n, 0, 40}] (* Vladimir Joseph Stephan Orlovsky, Feb 20 2010 *)
LinearRecurrence[{2, 1}, {1, 8}, 30] (* Harvey P. Dale, May 01 2013 *)
|
|
CROSSREFS
|
Cf. A001333, A000129, A048654, A048655.
Sequence in context: A188129 A041849 A041124 * A329768 A153873 A111325
Adjacent sequences: A048692 A048693 A048694 * A048696 A048697 A048698
|
|
KEYWORD
|
easy,nonn
|
|
AUTHOR
|
Barry E. Williams
|
|
STATUS
|
approved
|
|
|
|