login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A055273
a(n) = 3*a(n-1) - a(n-2) with a(0) = 1, a(1) = 8.
4
1, 8, 23, 61, 160, 419, 1097, 2872, 7519, 19685, 51536, 134923, 353233, 924776, 2421095, 6338509, 16594432, 43444787, 113739929, 297775000, 779585071, 2040980213, 5343355568, 13989086491, 36623903905, 95882625224, 251023971767, 657189290077, 1720543898464
OFFSET
0,2
REFERENCES
A. H. Beiler, Recreations in the Theory of Numbers, Dover, N.Y., 1964, pp. 194-196.
FORMULA
a(n) = (8*(((3 + sqrt(5))/2)^n - ((3 - sqrt(5))/2)^n) - (((3 + sqrt(5))/2)^(n - 1) - ((3 - sqrt(5))/2)^(n - 1)))/sqrt(5).
G.f.: (1 + 5*x)/(1 - 3*x + x^2).
From Rigoberto Florez, Dec 24 2018: (Start)
a(n) = Fibonacci(2n+2) + 5*Fibonacci(2n),
a(n) = 3*Fibonacci(2n+2) - Fibonacci(2n-3). (End)
E.g.f.: (1/5)*exp(3*x/2)*(5*cosh(sqrt(5)*x/2) + 13*sqrt(5)*sinh(sqrt(5)*x/2)). - Franck Maminirina Ramaharo, Dec 26 2018
a(n) = ChebyshevT(n, 3/2) + (13/2)*ChebyshevU(n-1, 3/2) = ChebyshevU(n, 3/2) + 5*ChebyshevU(n-1, 3/2). - G. C. Greubel, Jan 17 2020
MAPLE
seq(coeff(series((1+5*x)/(1-3*x+x^2), x, n+1), x, n), n = 0 .. 30); # Muniru A Asiru, Dec 29 2018
MATHEMATICA
Table[3Fibonacci[2n+2]-Fibonacci[2n-3], {n, 0, 20}] (* Rigoberto Florez, Dec 24 2018 *)
LinearRecurrence[{3, -1}, {1, 8}, 30] (* Vincenzo Librandi, Dec 25 2018 *)
PROG
(Magma) [Fibonacci(2*n+2) + 5*Fibonacci(2*n): n in [0..30]]; // Vincenzo Librandi, Dec 25 2018
(GAP) a:=[1, 8];; for n in [3..30] do a[n]:=3*a[n-1]-a[n-2]; od; Print(a); # Muniru A Asiru, Dec 29 2018
(PARI) vector(30, n, fibonacci(2*n) + 5*fibonacci(2*n-2) ) \\ G. C. Greubel, Jan 17 2020
(Sage) [fibonacci(2*n+2) +5*fibonacci(2*n) for n in (0..30)] # G. C. Greubel, Jan 17 2020
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Barry E. Williams, May 28 2000
STATUS
approved