login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A048467
a(n) = T(6,n), array T given by A047858.
1
1, 8, 23, 55, 123, 267, 571, 1211, 2555, 5371, 11259, 23547, 49147, 102395, 212987, 442363, 917499, 1900539, 3932155, 8126459, 16777211, 34603003, 71303163, 146800635, 301989883, 620756987, 1275068411, 2617245691
OFFSET
0,2
FORMULA
G.f.: (-9*x^2 + 3*x + 1)/((1-x)*(1-2*x)^2).
a(n) = 5*a(n-1) - 8*a(n-2) + 4*a(n-3). - Harvey P. Dale, Jul 07 2011
a(n) = 2^(n-1)*(n+12) - 5. - Vincenzo Librandi, Sep 28 2011
MATHEMATICA
LinearRecurrence[{5, -8, 4}, {1, 8, 23}, 30] (* or *) CoefficientList[ Series[ (-9x^2+3x+1)/((1-x)(1-2x)^2), {x, 0, 30}], x] (* Harvey P. Dale, Jul 07 2011 *)
PROG
(Magma) [2^(n-1)*(n+12)-5: n in [0..30]]; // Vincenzo Librandi, Sep 28 2011
(PARI) Vec((-9*x^2+3*x+1)/((1-x)*(1-2*x)^2) + O(x^40)) \\ Andrew Howroyd, Feb 15 2018
CROSSREFS
n-th difference of a(n), a(n-1), ..., a(0) is (7, 8, 9, ...).
Sequence in context: A027054 A372674 A358246 * A002765 A048770 A055273
KEYWORD
nonn,easy
STATUS
approved