login
A055271
a(n) = 5*a(n-1) - a(n-2) with a(0)=1, a(1)=7.
4
1, 7, 34, 163, 781, 3742, 17929, 85903, 411586, 1972027, 9448549, 45270718, 216905041, 1039254487, 4979367394, 23857582483, 114308545021, 547685142622, 2624117168089, 12572900697823, 60240386321026, 288629030907307, 1382904768215509, 6625894810170238, 31746569282635681, 152106951603008167
OFFSET
0,2
REFERENCES
A. H. Beiler, Recreations in the Theory of Numbers, Dover, N.Y., 1964, pp. 122-125, 194-196.
LINKS
I. Adler, Three Diophantine equations - Part II, Fib. Quart., 7 (1969), pp. 181-193.
E. I. Emerson, Recurrent Sequences in the Equation DQ^2=R^2+N, Fib. Quart., 7 (1969), pp. 231-242.
Tanya Khovanova, Recursive Sequences
FORMULA
a(n) = (7*(((5+sqrt(21))/2)^n - ((5-sqrt(21))/2)^n) - (((5+sqrt(21))/2)^(n-1) - ((5-sqrt(21))/2)^(n-1)))/sqrt(21).
G.f.: (1+2*x)/(1-5*x+x^2).
a(n) = (-1)^n*Sum_{k = 0..n} A238731(n,k)*(-8)^k. - Philippe Deléham, Mar 05 2014
a(n) = ChebyshevT(n, 5/2) + (9/2)*ChebyshevU(n-1,5/2) = ChebyshevU(n, 5/2) + 2*ChebyshevU(n-1, 5/2). - G. C. Greubel, Mar 16 2020
MAPLE
A055271:= n-> simplify(ChebyshevU(n, 5/2) + 2*ChebyshevU(n-1, 5/2)); seq(A055271(n), n=0..30); # G. C. Greubel, Mar 16 2020
MATHEMATICA
LinearRecurrence[{5, -1}, {1, 7}, 30] (* G. C. Greubel, Mar 16 2020 *)
PROG
(Magma) I:=[1, 7]; [n le 2 select I[n] else 5*Self(n-1) - Self(n-2): n in [1..30]]; // G. C. Greubel, Mar 16 2020
(Sage) [chebyshev_U(n, 5/2) + 2*chebyshev_U(n-1, 5/2) for n in (0..30)] # G. C. Greubel, Mar 16 2020
CROSSREFS
Cf. A030221.
Sequence in context: A099242 A032206 A124466 * A209890 A027209 A209807
KEYWORD
easy,nonn
AUTHOR
Barry E. Williams, May 10 2000
EXTENSIONS
Terms a(22) onward added by G. C. Greubel, Mar 16 2020
STATUS
approved