login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A255585
Composite numbers k such that Sum_{i=1..t-1} d(i+1)/d(i) is prime, where d(1), ..., d(t) are the divisors of k in ascending order.
2
50, 98, 108, 242, 338, 375, 578, 1029, 1058, 1458, 1922, 2738, 3072, 3362, 3993, 4418, 5618, 7442, 8978, 9216, 10658, 13778, 14739, 18818, 20402, 20577, 21218, 22898, 26985, 31250, 34322, 45602, 46875, 49298, 55778, 58564, 59858, 72962, 73167, 74498, 78732
OFFSET
1,1
COMMENTS
Subsequence of A255586.
The corresponding primes are 11, 13, 17, 17, 19, 17, 23, 19, 29, 23, 37, 43, 31, 47, 23, 53, 59, 67, 73, 43, 79, 89, 29, 103, 107, 31, 109, 113, 31, 29, 137, ...
LINKS
Amiram Eldar, Table of n, a(n) for n = 1..10000 (terms 1..150 from Harvey P. Dale)
EXAMPLE
98 is in the sequence because the divisors of 98 are {1, 2, 7, 14, 49, 98} and 2/1 + 7/2 + 14/7 + 49/14 + 98/49 = 13 is prime.
MATHEMATICA
lst={}; Do[s=0; Do[s=s+Divisors[n][[i+1]]/Divisors[n][[i]], {i, 1, Length[Divisors[n]]-1}]; If[PrimeQ[s]&&!PrimeQ[n], AppendTo[lst, n]], {n, 80000}]; lst
compQ[n_]:=Module[{d=Divisors[n]}, CompositeQ[n]&&PrimeQ[Total[ Rest[d]/ Most[d]]]]; Select[Range[80000], compQ] (* Harvey P. Dale, Sep 03 2015 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Michel Lagneau, Feb 27 2015
STATUS
approved