login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A255587
Maximum absolute value of the coefficients of the n-th Swinnerton-Dyer polynomial.
2
1, 2, 10, 960, 13950764, 255690851718529024, 1771080720430629161685158978892152599456, 857834471403601877816627441633642526746656338035964968069692458744011458425706833248256
OFFSET
0,2
REFERENCES
Roman E. Maeder, Programming in Mathematica, Addison-Wesley, 1990, page 105.
EXAMPLE
SwinnertonDyerP(3, x) = x^8 - 40*x^6 + 352*x^4 - 960*x^2 + 576, hence a(3) = 960.
MAPLE
p:= proc(n) option remember; expand(`if`(n=0, x, mul(
subs(x=x+i*sqrt(ithprime(n)), p(n-1)), i=[1, -1])))
end:
a:= n-> max(map(abs, [coeffs(p(n))])):
seq(a(n), n=0..8); # Alois P. Heinz, Jun 12 2022
MATHEMATICA
SwinnertonDyerP[0, x_] := x; SwinnertonDyerP[n_, x_] := Module[{sd, srp = Sqrt[Prime[n]] }, sd[y_] = SwinnertonDyerP[n - 1, y]; Expand[sd[x + srp] sd[x - srp]]]; a[n_] := CoefficientList[SwinnertonDyerP[n, x], x^2] // Abs // Max; Table[a[n], {n, 1, 10}]
CROSSREFS
Sequence in context: A222420 A263921 A290495 * A137890 A074333 A008559
KEYWORD
nonn
AUTHOR
EXTENSIONS
a(0)=1 prepended by Alois P. Heinz, Jun 12 2022
STATUS
approved