This site is supported by donations to The OEIS Foundation.

 Annual appeal: Please make a donation to keep the OEIS running! Over 6000 articles have referenced us, often saying "we discovered this result with the help of the OEIS". Other ways to donate

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A153731 Triangle read by rows: coefficients of Swinnerton-Dyer polynomials. 2
 -2, 1, 1, -10, 1, 576, -960, 352, -40, 1, 46225, -5596840, 13950764, -7453176, 1513334, -141912, 6476, -136, 1, 2000989041197056, -44660812492570624, 183876928237731840, -255690851718529024, 172580952324702208 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 REFERENCES Roman E. Maeder. Programming in Mathematica, Addison-Wesley, 1990, page 105. LINKS Eric Weisstein's World of Mathematics, Swinnerton-Dyer Polynomial EXAMPLE First few rows are: -2, 1; 1, -10, 1; 576, -960, 352, -40, 1; 46225, -5596840, 13950764, -7453176, 1513334, -141912, 6476, -136, 1; .... -2 + x^2, 1 - 10*x^2 + x^4, 576 - 960*x^2 + 352*x^4 - 40*x^6 + x^8, ... MATHEMATICA SwinnertonDyerP[0, x_ ] := x; SwinnertonDyerP[n_, x_ ] := Module[{sd, srp = Sqrt[Prime[n]]}, sd[y_] = SwinnertonDyerP[n - 1, y]; Expand[ sd[x + srp] sd[x - srp] ] ]; row[n_] := CoefficientList[ SwinnertonDyerP[n, x], x^2]; Table[row[n], {n, 1, 5}] // Flatten (* Jean-François Alcover, Nov 09 2012 *) CROSSREFS Sequence in context: A256168 A054768 A104251 * A262226 A154989 A064307 Adjacent sequences:  A153728 A153729 A153730 * A153732 A153733 A153734 KEYWORD sign,tabf AUTHOR Eric W. Weisstein, Dec 31 2008 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.