login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual appeal: Please make a donation to keep the OEIS running! Over 6000 articles have referenced us, often saying "we discovered this result with the help of the OEIS".
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A153731 Triangle read by rows: coefficients of Swinnerton-Dyer polynomials. 2
-2, 1, 1, -10, 1, 576, -960, 352, -40, 1, 46225, -5596840, 13950764, -7453176, 1513334, -141912, 6476, -136, 1, 2000989041197056, -44660812492570624, 183876928237731840, -255690851718529024, 172580952324702208 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

REFERENCES

Roman E. Maeder. Programming in Mathematica, Addison-Wesley, 1990, page 105.

LINKS

Table of n, a(n) for n=1..24.

Eric Weisstein's World of Mathematics, Swinnerton-Dyer Polynomial

EXAMPLE

First few rows are:

-2, 1;

1, -10, 1;

576, -960, 352, -40, 1;

46225, -5596840, 13950764, -7453176, 1513334, -141912, 6476, -136, 1;

....

-2 + x^2, 1 - 10*x^2 + x^4, 576 - 960*x^2 + 352*x^4 - 40*x^6 + x^8, ...

MATHEMATICA

SwinnertonDyerP[0, x_ ] := x; SwinnertonDyerP[n_, x_ ] := Module[{sd, srp = Sqrt[Prime[n]]}, sd[y_] = SwinnertonDyerP[n - 1, y]; Expand[ sd[x + srp] sd[x - srp] ] ]; row[n_] := CoefficientList[ SwinnertonDyerP[n, x], x^2]; Table[row[n], {n, 1, 5}] // Flatten (* Jean-Fran├žois Alcover, Nov 09 2012 *)

CROSSREFS

Sequence in context: A256168 A054768 A104251 * A262226 A154989 A064307

Adjacent sequences:  A153728 A153729 A153730 * A153732 A153733 A153734

KEYWORD

sign,tabf

AUTHOR

Eric W. Weisstein, Dec 31 2008

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified December 13 16:57 EST 2017. Contains 295959 sequences.