This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A153731 Triangle read by rows: nonzero coefficients of Swinnerton-Dyer polynomials. 2
 -2, 1, 1, -10, 1, 576, -960, 352, -40, 1, 46225, -5596840, 13950764, -7453176, 1513334, -141912, 6476, -136, 1, 2000989041197056, -44660812492570624, 183876928237731840, -255690851718529024, 172580952324702208 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 REFERENCES Roman E. Maeder. Programming in Mathematica, Addison-Wesley, 1990, page 105. LINKS Eric Weisstein's World of Mathematics, Swinnerton-Dyer Polynomial EXAMPLE First few rows are: -2, 1; 1, -10, 1; 576, -960, 352, -40, 1; 46225, -5596840, 13950764, -7453176, 1513334, -141912, 6476, -136, 1; .... -2 + x^2, 1 - 10*x^2 + x^4, 576 - 960*x^2 + 352*x^4 - 40*x^6 + x^8, ... MATHEMATICA SwinnertonDyerP[0, x_ ] := x; SwinnertonDyerP[n_, x_ ] := Module[{sd, srp = Sqrt[Prime[n]]}, sd[y_] = SwinnertonDyerP[n - 1, y]; Expand[ sd[x + srp] sd[x - srp] ] ]; row[n_] := CoefficientList[ SwinnertonDyerP[n, x], x^2]; Table[row[n], {n, 1, 5}] // Flatten (* Jean-François Alcover, Nov 09 2012 *) PROG (Julia) using Nemo function A153731Row(n)     R, x = PolynomialRing(ZZ, "x")     p = swinnerton_dyer(n, x)     [coeff(p, j) for j in 0:2:2^n] end for n in 1:4 A153731Row(n) |> println end # Peter Luschny, Mar 13 2018 CROSSREFS Sequence in context: A054768 A104251 A320576 * A262226 A298158 A154989 Adjacent sequences:  A153728 A153729 A153730 * A153732 A153733 A153734 KEYWORD sign,tabf AUTHOR Eric W. Weisstein, Dec 31 2008 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified July 21 02:02 EDT 2019. Contains 325189 sequences. (Running on oeis4.)