login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A153732
Binomial transform of A109747.
4
1, 3, 8, 19, 41, 84, 171, 347, 690, 1385, 2825, 5438, 11077, 24535, 33720, 102623, 350605, -1120228, 5876775, 11232063, -256532422, 1748895117, -4057110163, -42841409122, 605093026361, -3691581277925, 3538657621384, 186391745956155, -2296017574506751
OFFSET
0,2
COMMENTS
Equals triple binomial transform of A014182.
LINKS
FORMULA
E.g.f.: exp(2*x+1-exp(-x)) = 1+3*x+8*x^2/2!+19*x^3/3!+....
a(n) = exp(1)*Sum_{k >= 0} (-1)^k*(2-k)^n/k!. Cf. A126617. - Peter Bala, Oct 28 2011.
G.f.: (G(0) - 1)/(x-1) where G(k) = 1 - 1/(1+k*x-2*x)/(1-x/(x-1/G(k+1) )); (recursively defined continued fraction). - Sergei N. Gladkovskii, Jan 17 2013
a(0) = 1; a(n) = 2*a(n-1) - Sum_{k=1..n} (-1)^k * binomial(n-1,k-1) * a(n-k). - Ilya Gutkovskiy, Dec 01 2023
EXAMPLE
a(3) = 19 = (1, 3, 3, 1) dot (1, 2, 3, 3) = (1 + 6 + 9 + 3); where A109747 = (1, 2, 3, 3, 2, 3, 5, -4, 5, 55, -212, ...).
MATHEMATICA
Join[{1}, Rest[CoefficientList[Series[Exp[2*x + 1 - Exp[-x]], {x, 0, 50}], x]*Range[0, 50]!]] (* G. C. Greubel, Aug 31 2016 *)
CROSSREFS
KEYWORD
sign
AUTHOR
Gary W. Adamson, Dec 31 2008
STATUS
approved