login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A153734
Triangle T(n,k): T(n,k) gives the A153452(m_k) such that A056239(m_k) = n, [1<=k<=A000041(n)], sorted by m_k, read by rows. Sequence A060240 is this sequence's permutation.
4
1, 1, 1, 1, 1, 2, 1, 1, 2, 3, 3, 1, 1, 4, 5, 5, 6, 4, 1, 1, 9, 5, 5, 5, 10, 16, 9, 10, 5, 1, 1, 6, 14, 14, 35, 15, 21, 21, 14, 20, 35, 14, 15, 6, 1, 1, 7, 20, 14, 21, 28, 56, 64, 70, 42, 14, 90, 35, 70, 56, 28, 35, 64, 20, 21, 7, 1
OFFSET
0,6
COMMENTS
Lengths of rows are 1, 1, 2, 3, 5, 7, 11, 15, 22, 30,.... (A000041). Row sums give A000085.
LINKS
EXAMPLE
For n=4, A056239(7) = A056239(9) = A056239(10) = A056239(12) = A056239(16) = 4. Hence T(4,k) = A153452(m_k) = (1,2,3,3,1), where 1<=k<=5, m_k = 7,9,10,12,16.
Triangle T(n,k) begins:
1;
1;
1, 1;
1, 2, 1;
1, 2, 3, 3, 1;
1, 4, 5, 5, 6, 4, 1;
1, 9, 5, 5, 5, 10, 16, 9, 10, 5, 1;
...
MAPLE
with(numtheory):
g:= proc(n) option remember; `if`(n=1, 1,
add(g(n/q*`if`(q=2, 1, prevprime(q))), q=factorset(n)))
end:
b:= proc(n, i) option remember; `if`(n=0 or i<2, [2^n],
[seq(map(p->p*ithprime(i)^j, b(n-i*j, i-1))[], j=0..n/i)])
end:
T:= n-> map(g, sort(b(n, n)))[]:
seq(T(n), n=0..10); # Alois P. Heinz, Aug 09 2012
MATHEMATICA
g[n_] := g[n] = If[n == 1, 1, Sum[g[n/q*If[q == 2, 1, NextPrime[q, -1]]], {q, FactorInteger[n][[All, 1]]}]];
b[n_, i_] := b[n, i] = If[n == 0 || i < 2, {2^n}, Flatten[Table[Map[ #*Prime[i]^j&, b[n - i*j, i - 1]], {j, 0, n/i}]]];
T[n_] := g /@ Sort[b[n, n]];
T /@ Range[0, 10] // Flatten (* Jean-François Alcover, Feb 16 2021, after Alois P. Heinz *)
CROSSREFS
Sequence in context: A253240 A290472 A060240 * A285554 A128495 A328062
KEYWORD
easy,nonn,look,tabf
AUTHOR
Naohiro Nomoto, Dec 31 2008
STATUS
approved