Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #15 Feb 16 2021 05:57:14
%S 1,1,1,1,1,2,1,1,2,3,3,1,1,4,5,5,6,4,1,1,9,5,5,5,10,16,9,10,5,1,1,6,
%T 14,14,35,15,21,21,14,20,35,14,15,6,1,1,7,20,14,21,28,56,64,70,42,14,
%U 90,35,70,56,28,35,64,20,21,7,1
%N Triangle T(n,k): T(n,k) gives the A153452(m_k) such that A056239(m_k) = n, [1<=k<=A000041(n)], sorted by m_k, read by rows. Sequence A060240 is this sequence's permutation.
%C Lengths of rows are 1, 1, 2, 3, 5, 7, 11, 15, 22, 30,.... (A000041). Row sums give A000085.
%H Alois P. Heinz, <a href="/A153734/b153734.txt">Rows n = 0..26, flattened</a>
%e For n=4, A056239(7) = A056239(9) = A056239(10) = A056239(12) = A056239(16) = 4. Hence T(4,k) = A153452(m_k) = (1,2,3,3,1), where 1<=k<=5, m_k = 7,9,10,12,16.
%e Triangle T(n,k) begins:
%e 1;
%e 1;
%e 1, 1;
%e 1, 2, 1;
%e 1, 2, 3, 3, 1;
%e 1, 4, 5, 5, 6, 4, 1;
%e 1, 9, 5, 5, 5, 10, 16, 9, 10, 5, 1;
%e ...
%p with(numtheory):
%p g:= proc(n) option remember; `if`(n=1, 1,
%p add(g(n/q*`if`(q=2, 1, prevprime(q))), q=factorset(n)))
%p end:
%p b:= proc(n, i) option remember; `if`(n=0 or i<2, [2^n],
%p [seq(map(p->p*ithprime(i)^j, b(n-i*j, i-1))[], j=0..n/i)])
%p end:
%p T:= n-> map(g, sort(b(n, n)))[]:
%p seq(T(n), n=0..10); # _Alois P. Heinz_, Aug 09 2012
%t g[n_] := g[n] = If[n == 1, 1, Sum[g[n/q*If[q == 2, 1, NextPrime[q, -1]]], {q, FactorInteger[n][[All, 1]]}]];
%t b[n_, i_] := b[n, i] = If[n == 0 || i < 2, {2^n}, Flatten[Table[Map[ #*Prime[i]^j&, b[n - i*j, i - 1]], {j, 0, n/i}]]];
%t T[n_] := g /@ Sort[b[n, n]];
%t T /@ Range[0, 10] // Flatten (* _Jean-François Alcover_, Feb 16 2021, after _Alois P. Heinz_ *)
%Y Cf. A067924, A215366.
%K easy,nonn,look,tabf
%O 0,6
%A _Naohiro Nomoto_, Dec 31 2008