OFFSET
0,4
COMMENTS
See A049310 for the coefficient table of Chebyshev's S(n,x)=U(n,x/2) polynomials.
The triangle for the coefficients of x^2 in S(n,x)^2 is A158454. - Wolfdieter Lang, Oct 18 2012
LINKS
FORMULA
S(2;n,x):=sum(S(k,x)^2,k=0..n)=sum(a(n,m)*x^(2*m),m=0..n), n>=0.
a(n,m)=[x^m](n+2-T(n+1,x/2)*U(n+1,x/2))/(2*(1-(x/2)^2)).
EXAMPLE
[1]; [1,1]; [2,-1,1]; [2,3,-3,1]; [3,-3,8,-5,1]; [3,6,-16,17,-7,1]; ...
Row polynomial S(2;4,x)=3-3*x^2+8*x^4-5*x^6+x^8 = sum(S(k,x)^2,k=0..4).
(4+2-T(4+1,x/2)*U(4+1,x/2))/(2*(1-(x/2)^2))= S(2;4,x)
CROSSREFS
KEYWORD
AUTHOR
Wolfdieter Lang Apr 04 2007
STATUS
approved