login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A128495 Coefficient table for sums of squares of Chebyshev's S-Polynomials. 5
1, 1, 1, 2, -1, 1, 2, 3, -3, 1, 3, -3, 8, -5, 1, 3, 6, -16, 17, -7, 1, 4, -6, 30, -45, 30, -9, 1, 4, 10, -50, 103, -98, 47, -11, 1, 5, -10, 80, -211, 269, -183, 68, -13, 1, 5, 15, -120, 399, -651, 588, -308, 93, -15, 1, 6, -15, 175, -707, 1432, -1644, 1136, -481, 122, -17, 1, 6, 21, -245, 1190, -2920, 4132, -3608 (list; table; graph; refs; listen; history; text; internal format)
OFFSET

0,4

COMMENTS

See A049310 for the coefficient table of Chebyshev's S(n,x)=U(n,x/2) polynomials.

The triangle for the coefficients of x^2 in S(n,x)^2 is A158454. - Wolfdieter Lang, Oct 18 2012

LINKS

Table of n, a(n) for n=0..72.

W. Lang, First 15 rows.

FORMULA

S(2;n,x):=sum(S(k,x)^2,k=0..n)=sum(a(n,m)*x^(2*m),m=0..n), n>=0.

a(n,m)=[x^m](n+2-T(n+1,x/2)*U(n+1,x/2))/(2*(1-(x/2)^2)).

EXAMPLE

[1]; [1,1]; [2,-1,1]; [2,3,-3,1]; [3,-3,8,-5,1]; [3,6,-16,17,-7,1]; ...

Row polynomial S(2;4,x)=3-3*x^2+8*x^4-5*x^6+x^8 = sum(S(k,x)^2,k=0..4).

(4+2-T(4+1,x/2)*U(4+1,x/2))/(2*(1-(x/2)^2))= S(2;4,x)

CROSSREFS

Row sums (signed) look like: A004523. Row sums (unsigned): A128496.

Cf. A128494 =S(1; n, m).

Sequence in context: A060240 A153734 A285554 * A328062 A326281 A113136

Adjacent sequences:  A128492 A128493 A128494 * A128496 A128497 A128498

KEYWORD

sign,easy,tabl

AUTHOR

Wolfdieter Lang Apr 04 2007

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified June 1 20:49 EDT 2020. Contains 334765 sequences. (Running on oeis4.)