OFFSET
1,4
COMMENTS
Because of symmetry of the 3-dimensional-Ferrers plots, this sequence also counts the plane partitions with 3 or more rows and the plane partitions with maximal element >= 3
LINKS
Alois P. Heinz, Table of n, a(n) for n = 1..5000
W. Meeussen, PlanePartitions (Mathematica program, personal web site).
EXAMPLE
a(4)=3:
1111 111 211
.... 1.. ...
MAPLE
b:= proc(n, k) option remember; `if`(n=0, 1, add(add(min(d, k)
*d, d=numtheory[divisors](j))*b(n-j, k), j=1..n)/n)
end:
a:= n-> b(n, infinity)-b(n, 2):
seq(a(n), n=1..50); # Alois P. Heinz, Sep 24 2018
MATHEMATICA
(* planepartitions[] : see link *); Table[Count[planepartitions[n], q_ /; Length[First[q]] >= 3], {n, 12}]
CROSSREFS
KEYWORD
nonn
AUTHOR
Wouter Meeussen, Jan 11 2004
EXTENSIONS
a(21)-a(27) from Vaclav Kotesovec, May 05 2018
a(28)-a(38) from Alois P. Heinz, Sep 24 2018
STATUS
approved