OFFSET
0,2
COMMENTS
The family of recurrences a(n) = 2*k*a(n-1) + a(n-2), a(0)=1, a(1)=k has solution a(n) = ((k+sqrt(k^2+1))^n + (k-sqrt(k^2+1))^n)/2; a(n) = Sum_{j=0..floor(n/2)} C(n,2k)*(k^2+1)^jk^(n-2j); a(n) = T(n,ki)*(-i)^n; e.g.f. exp(kx)*cosh(sqrt(k^2+1)*x).
LINKS
FORMULA
E.g.f.: exp(6x)*cosh(sqrt(37)x);
a(n) = ((6+sqrt(37))^n + (6-sqrt(37))^n)/2;
a(n) = Sum_{k=0..floor(n/2)} C(n, 2k)*37^k*6^(n-2k).
a(n) = T(n, 6i)*(-i)^n with T(n, x) Chebyshev's polynomials of the first kind (see A053120) and i^2 = -1.
G.f.: (1-6x)/(1-12*x-x^2). - Philippe Deléham, Nov 21 2008
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Paul Barry, Nov 15 2003
STATUS
approved