This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A089926 a(n)=12a(n-1)+a(n-2), a(0)=1,a(1)=6. 1
 1, 6, 73, 882, 10657, 128766, 1555849, 18798954, 227143297, 2744518518, 33161365513, 400680904674, 4841332221601, 58496667563886, 706801342988233, 8540112783422682, 103188154744060417, 1246797969712147686 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS The family of recurrences a(n)=2ka(n-1)+a(n-2), a(0)=1,a(1)=k has solution a(n)=((k+sqrt(k^2+1))^n+(k-sqrt(k^2+1))^n)/2; a(n)=sum{j=0..floor(n/2), C(n,2k)(k^2+1)^jk^(n-2j)}; a(n)=T(n,ki)(-i)^n; e.g.f. exp(kx)cosh(sqrt(k^2+1)x). LINKS Tanya Khovanova, Recursive Sequences Index entries for linear recurrences with constant coefficients, signature (12,1). FORMULA E.g.f. : exp(6x)cosh(sqrt(37)x); a(n)=((6+sqrt(37))^n+(6-sqrt(37))^n)/2; a(n)=sum{k=0..floor(n/2), C(n, 2k)37^k6^(n-2k)}. a(n)=T(n, 6i)(-i)^n with T(n, x) Chebyshev's polynomials of the first kind (see A053120) and i^2=-1. G.f.: (1-6x)/(1-12*x-x^2). [From Philippe Deléham, Nov 21 2008] CROSSREFS Cf. A088320, A088317, A005667, A001077. Sequence in context: A179568 A202557 A041060 * A135594 A168603 A244689 Adjacent sequences:  A089923 A089924 A089925 * A089927 A089928 A089929 KEYWORD easy,nonn AUTHOR Paul Barry, Nov 15 2003 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified October 17 01:24 EDT 2018. Contains 316275 sequences. (Running on oeis4.)