login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A135594
a(n) = (1/2^n) * Sum_{i=0..n} (-1)^(n-i) * binomial(n,i) * A000364(i).
1
1, 0, 1, 6, 73, 1380, 37801, 1417626, 69802993, 4369750440, 339034806001, 31935510092046, 3590398569115513, 474937566660074700, 73024143791301120601, 12914495107705743175266, 2603190607000627341985633, 593297406341867021292734160
OFFSET
0,4
COMMENTS
Let k be a positive integer. It appears that reducing the sequence {a(n): n >= 1} modulo k produces a periodic sequence with period a divisor of phi(k) unless k is of the form 2^j, when the period equals k. For example, modulo 7 the sequence becomes [0, 1, 6, 3, 1, 1, 0, 1, 6, 3, 1, 1, 0, 1, 6, 3, 1, 1, ...], with an apparent period of 6 = phi(7), while modulo 8 the sequence becomes [0, 1, 6, 1, 4, 1, 2, 1, 0, 1, 6, 1, 4, 1, 2, 1, 0, 1, 6, 1, 4, 1, 2, 1, ...] with an apparent period of 8. - Peter Bala, May 07 2023
REFERENCES
I. P. Goulden and D. M. Jackson, Combinatorial Enumeration, Wiley, N.Y., 1983, Exercise 4.2.2.(b).
FORMULA
G.f.: 1/Q(0), where Q(k)= 1 + x - x*(2*k+1)*(k+1)/(1 - x*(2*k+1)*(k+1)/Q(k+1)); (continued fraction). - Sergei N. Gladkovskii, May 04 2013
a(n) ~ 2^(3*n + 3) * n^(2*n + 1/2) / (Pi^(2*n + 1/2) * exp(2*n)). - Vaclav Kotesovec, Jun 08 2019
Conjecture: e.g.f. as a continued fraction: 2*exp(-t)/(2 - (1-exp(-4*t))/(2 - (1-exp(-8*t))/(2 - (1-exp(-12*t))/(2 - ... )))) = 1 + t^2/2! + 6*t^3/3! + 73*t^4/4! + .... Cf. A000657 and A005799. - Peter Bala, Dec 21 2019
MAPLE
A000364 := proc(n) option remember ; (2*n)!*coeftayl(sec(x), x=0, 2*n) ; end: A135594 := proc(n) add((-1)^(n-i)*binomial(n, i)*A000364(i), i=0..n)/2^n ; end: seq(A135594(n), n=0..20) ; # R. J. Mathar, Mar 14 2008
f:=sec(z): fser:=series(f, z=0, 63): for n from 0 to 60 do b[n]:=factorial(n)*coeff(fser, z, n) end do: a:= proc(n) options operator, arrow: add((-1)^(n-k)*binomial(n, k)*b[2*k], k=0..n)/2^n end proc: seq(a(n), n=0..16); # Emeric Deutsch, Mar 17 2008
MATHEMATICA
Table[(-1)^n*Sum[Binomial[n, k]*EulerE[2*k], {k, 0, n}]/2^n, {n, 0, 20}] (* Vaclav Kotesovec, Jun 08 2019 *)
CROSSREFS
Sequence in context: A089926 A380043 A372251 * A346960 A168603 A244689
KEYWORD
easy,nonn
AUTHOR
Vladeta Jovovic, Feb 25 2008
EXTENSIONS
More terms from R. J. Mathar and Emeric Deutsch, Mar 03 2008
STATUS
approved