login
A346960
a(0) = 0, a(1) = 1; a(n) = n * (n+1) * a(n-1) + a(n-2).
2
0, 1, 6, 73, 1466, 44053, 1851692, 103738805, 7471045652, 672497847485, 73982234269002, 9766327421355749, 1523621059965765846, 277308799241190739721, 58236371461710021107256, 13977006459609646256481161, 3801803993385285491783983048, 1163365998982356970132155293849
OFFSET
0,3
COMMENTS
a(n) is the numerator of fraction equal to the continued fraction [0; 2, 6, 12, 20, 30, ..., n*(n+1)].
FORMULA
a(n) ~ c * n^(2*n + 2) / exp(2*n), where c = 3.2100642122891047165999468271849715691225751316633504931782933233387646256... - Vaclav Kotesovec, Aug 14 2021
EXAMPLE
a(1) = 1 because 1/(1*2) = 1/2.
a(2) = 6 because 1/(1*2 + 1/(2*3)) = 6/13.
a(3) = 73 because 1/(1*2 + 1/(2*3 + 1/(3*4))) = 73/158.
a(4) = 1466 because 1/(1*2 + 1/(2*3 + 1/(3*4 + 1/(4*5)))) = 1466/3173.
MATHEMATICA
a[0] = 0; a[1] = 1; a[n_] := a[n] = n (n + 1) a[n - 1] + a[n - 2]; Table[a[n], {n, 0, 17}]
Table[Numerator[ContinuedFractionK[1, k (k + 1), {k, 1, n}]], {n, 0, 17}]
KEYWORD
nonn,frac
AUTHOR
Ilya Gutkovskiy, Aug 13 2021
STATUS
approved