login
A346962
Decimal expansion of Integral_{x=-1/e..0} LambertW(x)/LambertW(-1,x) dx.
1
0, 5, 5, 6, 2, 9, 5, 8, 9, 7, 2, 8, 9, 8, 6, 8, 9, 5, 4, 6, 1, 2, 9, 0, 1, 4, 6, 6, 9, 4, 1, 0, 5, 0, 6, 8, 4, 5, 6, 1, 2, 9, 4, 8, 6, 9, 1, 1, 7, 2, 5, 2, 1, 6, 9, 3, 4, 9, 3, 9, 8, 6, 9, 5, 7, 1, 2, 4, 2, 9, 0, 3, 0, 3, 2, 6, 9, 0, 1, 3, 5, 0, 4, 0, 1, 6, 9, 4, 6, 7, 8, 3, 0, 9, 9, 7, 5, 6, 6, 2, 9, 6, 3, 1, 1, 1, 4, 3
OFFSET
0,2
FORMULA
Equals (1/e) + Integral_{x=0..1} log(x)*x^(1/(1-x))/(1-x) dx.
Equals (1/e) - Sum_{n>0} n^(n-2)/(n+1)^(n+1) = A068985-Sum_{n>0} A000272(n)/A000312(n+1).
EXAMPLE
0.0556295897289868954612901466941050684561294869117252169349398695712429...
MAPLE
evalf(Integrate(LambertW(x)/LambertW(-1, x), x = -exp(-1)..0), 120); # Vaclav Kotesovec, Aug 23 2021
MATHEMATICA
N[Integrate[LambertW[x]/LambertW[-1, x], {x, -1/E, 0}], 120]
PROG
(PARI) exp(-1)+intnum(x=0, 1, log(x)*x^(1/(1-x))/(1-x))
CROSSREFS
KEYWORD
nonn,cons
AUTHOR
Gleb Koloskov, Aug 09 2021
STATUS
approved