The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A258072 Constant x that satisfies: x = Sum_{n>=1} frac(n*(1-x)) / 2^n. 2
 0, 5, 5, 6, 4, 2, 5, 3, 0, 9, 8, 4, 9, 9, 6, 7, 3, 8, 4, 2, 1, 3, 9, 5, 9, 5, 5, 6, 4, 2, 5, 3, 0, 9, 8, 4, 9, 9, 6, 7, 4, 1, 4, 8, 8, 5, 6, 9, 7, 3, 4, 6, 9, 6, 1, 1, 8, 7, 4, 2, 2, 5, 3, 7, 1, 5, 6, 8, 7, 4, 6, 8, 3, 5, 1, 4, 0, 9, 9, 7, 7, 6, 5, 6, 9, 7, 4, 6, 2, 4, 1, 1, 4, 7, 2, 1, 7, 5, 1, 4, 0, 0, 8, 0, 4, 1, 7, 5, 7, 0, 7, 2, 8, 4, 3, 0, 4, 9, 5, 6, 6, 8, 9, 0, 2, 1, 8, 6, 3, 8, 8, 0, 3, 9, 8, 1, 6, 8, 9, 5, 0, 4, 4, 5, 3, 7, 6, 7, 7, 3, 9, 7 (list; constant; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 COMMENTS A good approximation to this constant is 853/1533, which is correct to 39 digits. LINKS Paul D. Hanna, Table of n, a(n) for n = 1..1051 Eric Weisstein, Devil's Staircase from MathWorld. FORMULA This constant satisfies: (1) 1 = x + Sum_{n>=1} {n*x} / 2^n, where {z} denotes the fractional part of z. (2) 1 = 3*x - Sum_{n>=1} [n*x] / 2^n, where [z] denotes the integer floor of z. (3) 1 = 3*x - Sum_{n>=1} 1 / 2^[n/x], a "devil's staircase" sum. (4) 2 = 3*x + Sum_{n>=1} 1 / 2^[n/(1-x)], a "devil's staircase" sum. EXAMPLE x = 0.5564253098499673842139595564253098499674148856973... where x = Sum_{n>=1} {n*(1-x)} / 2^n such that x > 1/2 and x < 1. Other series involving x begin: (a) 3*x-1 = 0/2 + 1/2^2 + 1/2^3 + 2/2^4 + 2/2^5 + 3/2^6 + 3/2^7 + 4/2^8 + 5/2^9 + 5/2^10 + 6/2^11 + 6/2^12 + 7/2^13 + 7/2^14 +...+ [n*x]/2^n +... (b) 2-3*x = 0/2 + 0/2^2 + 1/2^3 + 1/2^4 + 2/2^5 + 2/2^6 + 3/2^7 + 3/2^8 + 3/2^9 + 4/2^10 + 4/2^11 + 5/2^12 + 5/2^13 + 6/2^14 +...+ [n*(1-x)]/2^n +... (c) 3*x-1 = 1/2^1 + 1/2^3 + 1/2^5 + 1/2^7 + 1/2^8 + 1/2^10 + 1/2^12 + 1/2^14 + 1/2^16 + 1/2^17 + 1/2^19 + 1/2^21 + 1/2^23 +...+ 1/2^[n/x] +... (d) 2-3*x = 1/2^2 + 1/2^4 + 1/2^6 + 1/2^9 + 1/2^11 + 1/2^13 + 1/2^15 + 1/2^18 + 1/2^20 + 1/2^22 + 1/2^24 + 1/2^27 + 1/2^29 +...+ 1/2^[n/(1-x)] +... note that (c) and (d) involve Beatty sequences as exponents of 1/2. The complement to this constant is A258075: 1-x = 0.4435746901500326157860404435746901500325851143026... and possesses very similar properties. The CONTINUED FRACTION of this constant has large partial quotients: x = [0, 1, 1, 3, 1, 13, 2, 2, 2, 13873221091036303957247823199273002, 2, 1, 3629678580490010276942662479272194255700, 1, 2, 1641750258183103300511626670839317241878322469602726944497845558510238407145724198024905280171526972004597661433855, 1, 2]; the next partial quotient has 269 digits. The initial 1050 digits are: x = 0.5564253098499673842139595564253098499674148856973\ 46961187422537156874683514099776569746241147217514\ 00804175707284304956689021863880398168950445376773\ 97869124351107749150685359969085473306858168953679\ 27831734441829446195230937372935459207153753983898\ 74065192574635834189566545902772356271763079691212\ 90831172103487549886417527807780398542865509692226\ 08149905559217877170803532370246710319095218302903\ 84276768588338838779400281313110020519861589628662\ 07290669862012285835996689936253834935631412733578\ 32878908401613040289548435223542924033413917441738\ 39779761331625790679174412614627417160560525376935\ 08235399436576477526322156077421073147814928488645\ 01817375317582640783734746563037940960022191708560\ 24047445460825842624603092985415920636505203714465\ 05983829909044423021468093343065635377001373091927\ 59666867355423007888099609361836199718203521236808\ 61366778265783607400390910811294142791339294975323\ 10987440528961057209364146329129979765914177953257\ 81636294098016521983790614413168499975368197284926\ 68045730576968639707354417614766140862065127485563... PROG (PARI) {x=.5; for(i=1, 100, x = (x + sum(n=1, 4000, frac(n*(1-x))/2^n*1.))/2); x} (PARI) /* Series 2-3*x = Sum_{n>=1} 1 / 2^[n/(1-x)] gives faster convergence: */ {x=.5; for(i=1, 10, x = (2 - sum(n=1, 2000, 1./2^floor(n/(1-x))))/3 ); x} CROSSREFS Cf. A258075. Sequence in context: A224093 A193555 A161981 * A091284 A276860 A046604 Adjacent sequences:  A258069 A258070 A258071 * A258073 A258074 A258075 KEYWORD nonn,cons AUTHOR Paul D. Hanna, May 18 2015 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified July 30 07:58 EDT 2021. Contains 346348 sequences. (Running on oeis4.)