OFFSET
1,1
COMMENTS
78557 is the (conjectured) smallest Sierpiński number (A076336). This means that every number in the current sequence is composite.
Every number in the sequence is divisible by some number in {3, 5, 7, 13, 19, 37, 73}.
LINKS
Reinhard Zumkeller, Table of n, a(n) for n = 1..1000
W. Sierpiński, Sur un problème concernant les nombres k * 2^n + 1, Elem. Math., 15 (1960), pp. 73-74.
Wikipedia, Sierpinski Number
Index entries for linear recurrences with constant coefficients, signature (3,-2).
FORMULA
G.f.: x*(157115-157116*x)/((1-2*x)*(1-x)). - Vincenzo Librandi, May 19 2015
a(n) = 3*a(n-1)-2*a(n-2). - Wesley Ivan Hurt, Apr 26 2021
MATHEMATICA
Table[1 + 78557 2^n, {n, 1, 25}] (* Vincenzo Librandi, May 19 2015 *)
PROG
(Sage) [78557*2^n+1 for n in [1..25]]
(Magma) [1+78557*2^n: n in [1..25]]; // Vincenzo Librandi May 19 2015
(Haskell)
a258073 = (+ 1) . (* 78557) . (2 ^) -- Reinhard Zumkeller, May 19 2015
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Tom Edgar, May 18 2015
STATUS
approved