login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A347051
a(0) = 1, a(1) = 2; a(n) = n * (n+1) * a(n-1) + a(n-2).
2
1, 2, 13, 158, 3173, 95348, 4007789, 224531532, 16170278093, 1455549559902, 160126621867313, 21138169636045218, 3297714589844921321, 600205193521411725640, 126046388354086307305721, 30251733410174235165098680, 8228597533955746051214146681, 2517981097123868465906693983066
OFFSET
0,2
COMMENTS
a(n) is the denominator of fraction equal to the continued fraction [0; 2, 6, 12, 20, 30, ..., n*(n+1)].
FORMULA
a(n) ~ c * n^(2*n + 2) / exp(2*n), where c = 6.9478401587876967481571909904361736371398357108358019737901443045685048723... - Vaclav Kotesovec, Aug 14 2021
EXAMPLE
a(1) = 2 because 1/(1*2) = 1/2.
a(2) = 13 because 1/(1*2 + 1/(2*3)) = 6/13.
a(3) = 158 because 1/(1*2 + 1/(2*3 + 1/(3*4))) = 73/158.
a(4) = 3173 because 1/(1*2 + 1/(2*3 + 1/(3*4 + 1/(4*5)))) = 1466/3173.
MATHEMATICA
a[0] = 1; a[1] = 2; a[n_] := a[n] = n (n + 1) a[n - 1] + a[n - 2]; Table[a[n], {n, 0, 17}]
Table[Denominator[ContinuedFractionK[1, k (k + 1), {k, 1, n}]], {n, 0, 17}]
KEYWORD
nonn,frac
AUTHOR
Ilya Gutkovskiy, Aug 13 2021
STATUS
approved