OFFSET
0,2
COMMENTS
a(n) is the denominator of fraction equal to the continued fraction [0; 2, 6, 12, 20, 30, ..., n*(n+1)].
FORMULA
a(n) ~ c * n^(2*n + 2) / exp(2*n), where c = 6.9478401587876967481571909904361736371398357108358019737901443045685048723... - Vaclav Kotesovec, Aug 14 2021
EXAMPLE
a(1) = 2 because 1/(1*2) = 1/2.
a(2) = 13 because 1/(1*2 + 1/(2*3)) = 6/13.
a(3) = 158 because 1/(1*2 + 1/(2*3 + 1/(3*4))) = 73/158.
a(4) = 3173 because 1/(1*2 + 1/(2*3 + 1/(3*4 + 1/(4*5)))) = 1466/3173.
MATHEMATICA
a[0] = 1; a[1] = 2; a[n_] := a[n] = n (n + 1) a[n - 1] + a[n - 2]; Table[a[n], {n, 0, 17}]
Table[Denominator[ContinuedFractionK[1, k (k + 1), {k, 1, n}]], {n, 0, 17}]
CROSSREFS
KEYWORD
nonn,frac
AUTHOR
Ilya Gutkovskiy, Aug 13 2021
STATUS
approved