login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(0) = 1, a(1) = 2; a(n) = n * (n+1) * a(n-1) + a(n-2).
2

%I #8 Aug 14 2021 15:02:28

%S 1,2,13,158,3173,95348,4007789,224531532,16170278093,1455549559902,

%T 160126621867313,21138169636045218,3297714589844921321,

%U 600205193521411725640,126046388354086307305721,30251733410174235165098680,8228597533955746051214146681,2517981097123868465906693983066

%N a(0) = 1, a(1) = 2; a(n) = n * (n+1) * a(n-1) + a(n-2).

%C a(n) is the denominator of fraction equal to the continued fraction [0; 2, 6, 12, 20, 30, ..., n*(n+1)].

%F a(n) ~ c * n^(2*n + 2) / exp(2*n), where c = 6.9478401587876967481571909904361736371398357108358019737901443045685048723... - _Vaclav Kotesovec_, Aug 14 2021

%e a(1) = 2 because 1/(1*2) = 1/2.

%e a(2) = 13 because 1/(1*2 + 1/(2*3)) = 6/13.

%e a(3) = 158 because 1/(1*2 + 1/(2*3 + 1/(3*4))) = 73/158.

%e a(4) = 3173 because 1/(1*2 + 1/(2*3 + 1/(3*4 + 1/(4*5)))) = 1466/3173.

%t a[0] = 1; a[1] = 2; a[n_] := a[n] = n (n + 1) a[n - 1] + a[n - 2]; Table[a[n], {n, 0, 17}]

%t Table[Denominator[ContinuedFractionK[1, k (k + 1), {k, 1, n}]], {n, 0, 17}]

%Y Cf. A001040, A001046, A002378, A036246, A071896, A102038, A346960, A347052.

%K nonn,frac

%O 0,2

%A _Ilya Gutkovskiy_, Aug 13 2021