login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A347054
Number of domino tilings of a 32 X n rectangle.
0
1, 1, 3524578, 1117014753, 170220478472105, 224916047725262248, 12348080425980866090537, 30648981125778378496845537, 1010618564986361239515088848178, 3596059736380751648485086101179655, 87171995375835553001398855677616476448, 391978133958466896956216157693001644153072
OFFSET
0,3
COMMENTS
It is known that the number of domino tilings of an m X n rectangle is equal to the number of perfect matchings in the m X n grid graph.
REFERENCES
A. M. Magomedov, T. A. Magomedov, S. A. Lawrencenko, Mutually-recursive formulas for enumerating partitions of the rectangle, [in Russian, English summary], Prikl. Diskretn. Mat., 46 (2019), 108-121. DOI: 10.17223/20710410/46/9
A. M. Magomedov and S. A. Lavrenchenko, Computational aspects of the partition enumeration problem, [in Russian, English summary], Dagestan Electronic Mathematical Reports, 14 (2020), 1-21. DOI: 10.31029/demr.14.1
LINKS
M. E. Fisher, Statistical mechanics of dimers on a plane lattice, Phys. Rev., 124 (1961), 1664-1672.
P. W. Kasteleyn, Dimer statistics and phase transitions, J. Math. Phys., 4 (1963), 287-293.
V.-H. Nguyen, K. Perrot, M. Vallet, NP-completeness of the game Kingdomino{TM}, Theoret. Comput. Sci., 822 (2020), 23-35.
FORMULA
a(n) = Product_{j=1..16} (Product_{k=1..floor(n/2)}(4*(cos(j*Pi/33))^2+ 4*(cos(k*Pi/(n+1)))^2)) (special case of the double product formula in A099390).
MATHEMATICA
Do[ P=1;
Do[P=P*4*(Cos[Pi*i/(n+1)]^2+Cos[Pi*j/33]^2), {i, 1, n/2}, {j, 1, 16}];
Print["n=", n , ":", Round[P]], {n, 1, 11000}]
CROSSREFS
Column n=32 of A187596.
Sequence in context: A237006 A209785 A244620 * A202570 A348809 A209857
KEYWORD
nonn
AUTHOR
A. M. Magomedov and Serge Lawrencenko, Aug 14 2021
STATUS
approved