login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A244689
a(n) = Sum_{k=0..n} C(n,k) * (n + 3*2^k)^(n-k) * 2^(k^2).
1
1, 6, 73, 1934, 157857, 56192650, 92426525425, 666550826226318, 20291280723841291105, 2550027209175411070031954, 1305537190872353152721812616649, 2701765523097192231845112449534664934, 22497928378023184347083511140879821373194561, 751862888756012808502475142804126477229231539927258
OFFSET
0,2
FORMULA
a(n) = Sum_{k=0..n} C(n,k) * n^(n-k) * (3 + 2^k)^k.
a(n) ~ 2^(n^2). - Vaclav Kotesovec, Jul 11 2014
EXAMPLE
E.g.f.: A(x) = 1 + 6*x + 73*x^2/2! + 1934*x^3/3! + 157857*x^4/4! + 56192650*x^5/5! +...
ILLUSTRATION OF INITIAL TERMS:
a(1) = (1+3*2^0)^1*2^0 + (1+3*2^1)^0*2^1 = 6;
a(2) = (2+3*2^0)^2*2^0 + 2*(2+3*2^1)^1*2^1 + (2+3*2^2)^0*2^4 = 73;
a(3) = (3+3*2^0)^3*2^0 + 3*(3+3*2^1)^2*2^1 + 3*(3+3*2^2)^1*2^4 + (3+3*2^3)^0*2^9 = 1934;
a(4) = (4+3*2^0)^4*2^0 + 4*(4+3*2^1)^3*2^1 + 6*(4+3*2^2)^2*2^4 + 4*(4+3*2^3)^1*2^9 + (4+3*2^4)^0*2^16 = 157857; ...
where we have the binomial identity:
a(1) = 1^1*(3+2^0)^0 + 1^1*(3+2^1)^1 = 6;
a(2) = 2^2*(3+2^0)^0 + 2*2^1*(3+2^1)^1 + 2^0*(3+2^2)^2 = 73;
a(3) = 3^3*(3+2^0)^0 + 3*3^2*(3+2^1)^1 + 3*3^1*(3+2^2)^2 + 3^0*(3+2^3)^3 = 1934;
a(4) = 4^4*(3+2^0)^0 + 4*4^3*(3+2^1)^1 + 6*4^2*(3+2^2)^2 + 4*4^1*(3+2^3)^3 + 4^0*(3+2^4)^4 = 157857; ...
MATHEMATICA
Table[Sum[Binomial[n, k] * (n + 3*2^k)^(n-k) * 2^(k^2), {k, 0, n}], {n, 0, 20}] (* Vaclav Kotesovec, Jul 11 2014 *)
PROG
(PARI) {a(n) = sum(k=0, n, binomial(n, k) * (n + 3*2^k)^(n-k) * 2^(k^2) )}
for(n=0, 15, print1(a(n), ", "))
(PARI) {a(n) = sum(k=0, n, binomial(n, k) * n^(n-k) * (3 + 2^k)^k )}
for(n=0, 15, print1(a(n), ", "))
CROSSREFS
Cf. A244751.
Sequence in context: A135594 A346960 A168603 * A058793 A066171 A269647
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Jul 05 2014
STATUS
approved