OFFSET
0,3
COMMENTS
Also, a(n) equals the number of alternating permutations (p(1),...,p(2n)) of the multiset {1,1,2,2,...,n,n} satisfying p(1) <= p(2) > p(3) <= p(4) > p(5) <= ... <= p(2n). Hence, A275801(n) <= a(n) <= A275829(n). - Max Alekseyev, Aug 10 2016
This is the BinomialMean transform of A000364 (see A075271 for definition of transform). - John W. Layman, Dec 04 2002
This sequence appears to be middle column in Poupard's triangle A008301.
REFERENCES
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
Shishuo Fu, Zhicong Lin, and Zhi-Wei Sun, Proof of several conjectures relating permanents to Combinatorial sequences, arXiv:2109.11506v3 [math.CO], 2021-2023.
Shishuo Fu, Zhicong Lin, and Zhi-Wei Sun, Permanent identities, combinatorial sequences, and permutation statistics, Advances in Applied Mathematics, Volume 163, Part A, 102789 (2025).
Ira M. Gessel, Symmetric functions and P-recursiveness, J. Combin. Theory Ser. A 53 (1990), no. 2, 257-285.
H. Prodinger, On Touchard's continued fraction and extensions: combinatorics-free, self-contained proofs , arXiv:1102.5186 [math.CO], 2011.
Michael Z. Spivey and Laura L. Steil, The k-Binomial Transforms and the Hankel Transform, Journal of Integer Sequences, Vol. 9 (2006), Article 06.1.1.
FORMULA
a(n) = (1/2^n) * Sum_{i=0..n} binomial(n, i) * A000364(i).
From Sergei N. Gladkovskii, Dec 27 2012, Oct 11 2013, Oct 27 2013, Jan 08 2014: (Start) Continued fractions:
G.f.: A(x) = 1/(G(0) where G(k) = 1 - x*(k+1)*(2*k+1)/(1 - x*(k+1)*(2*k+1)/G(k+1)).
G.f.: Q(0)/(1-x), where Q(k) = 1 - x^2*(k+1)^2*(2*k+1)^2/(x^2*(k+1)^2*(2*k+1)^2 - (4*x*k^2 + 2*x*k + x - 1)*( 4*x*k^2 + 10*x*k + 7*x - 1)/Q(k+1)).
G.f.: R(0), where R(k) = 1 - x*(2*k+1)*(k+1)/(x*(2*k+1)*(k+1) - 1/(1 - x*(2*k+1)*(k+1)/(x*(2*k+1)*(k+1) - 1/R(k+1)))).
G.f.: 2/(x*Q(0)), where Q(k) = 2/x - 1 - (2*k+1)^2/(1 - (2*k+2)^2/Q(k+1)). (End)
a(n) ~ 2^(3*n+3) * n^(2*n+1/2) / (exp(2*n) * Pi^(2*n+1/2)). - Vaclav Kotesovec, May 30 2015
a(n) = 2^n * Sum_{k=0..n} (-1)^k*binomial(n, k)*euler(n+k, 1). - Peter Luschny, Aug 23 2017
From Peter Bala, Dec 21 2019: (Start)
O.g.f. as a continued fraction: 1/(1 - x/(1 - x/(1 - 6*x/(1 - 6*x/(1 - 15*x/(1 - 15*x/(1 - ... - n*(2*n-1)*x/(1 - n*(2*n-1)*x/(1 - ...))))))))) - apply Bala, Proposition 3, with a = 0, b = 1 and replace x with x/2.
Conjectures:
E.g.f. as a continued fraction: 2/(2 - (1-exp(-4*t))/(2 - (1-exp(-8*t))/(2 - (1-exp(-12*t))/(2 - ... )))) = 1 + t + 2*t^2/2! + 10*t^3/3! + 104*t^4/4! + ....
Cf. A000657. [added April 18 2024: for a proof of this conjecture see Fu et al., Section 4.3.]
a(n) = (-2)^(n+1)*Sum_{k = 0..floor((n-1)/2)} binomial(n,2*k+1)*(2^(2*n-2*k) - 1)*Bernoulli(2*n-2*k)/(2*n-2*k) for n >= 1. (End)
MAPLE
T := proc(n, k) option remember;
if n < 0 or k < 0 then 0
elif n = 0 then euler(k, 1)
else T(n-1, k+1) - T(n-1, k) fi end:
a := n -> (-2)^n*T(n, n); seq(a(n), n=0..16); # Peter Luschny, Aug 23 2017
MATHEMATICA
a[n_] := Sum[Binomial[n, i]Abs[EulerE[2i]], {i, 0, n}]/2^n
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
EXTENSIONS
Edited by Dean Hickerson, Dec 10 2002
STATUS
approved