login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A005800
Generalized Euler numbers of type 3^2n.
(Formerly M2188)
0
1, 2, 2248, 54103952, 9573516562048, 7512502267832874752, 19387585646491113265435648, 134942950050961684035671842506752, 2199105667698535717737352110310013698048
OFFSET
0,2
REFERENCES
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
Ira M. Gessel, Symmetric functions and P-recursiveness, J. Combin. Theory Ser. A 53 (1990), no. 2, 257-285.
FORMULA
a(n) = (1/36^n) * Sum_{i=0..2*n} binomial(2*n, i) * A000364(n+i).
MATHEMATICA
a[n_] := Sum[Binomial[2n, i]Abs[EulerE[2(n+i)]], {i, 0, 2n}]/36^n
CROSSREFS
CF. A000364 (Euler numbers).
Sequence in context: A028487 A073476 A051103 * A200170 A280899 A288164
KEYWORD
nonn,easy
EXTENSIONS
Edited by Dean Hickerson, Dec 10 2002
STATUS
approved