OFFSET
0,2
REFERENCES
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
Ira M. Gessel, Symmetric functions and P-recursiveness, J. Combin. Theory Ser. A 53 (1990), no. 2, 257-285.
FORMULA
a(n) = 1/3^(2*n+1) * Sum_{i=0..2*n+1} (-1)^(i+1) * 2^-i * binomial(2*n+1, i) * A000182(n+i+1).
a(n) ~ 2^(1/2)*3^(-1/2)*Pi^(-1/2)*n^(-1/2)*2^(8*n)*3^(-3*n)*{1 - 13/144*n^-1 + 169/41472*n^-2 + 48635/17915904*n^-3 - ...}. - Joe Keane (jgk(AT)jgk.org), Nov 07 2003
MATHEMATICA
a000182[n_] := (4^n*(4^n-1)*Abs[BernoulliB[2*n]])/(2*n); a[n_] := Sum[((-1)^(i+1)*Binomial[2*n+1, i]*a000182[n+i+1])/2^i, {i, 0, 2*n+1}]/3^(2*n+1)
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
EXTENSIONS
Edited by Dean Hickerson, Dec 10 2002
More terms from Joe Keane (jgk(AT)jgk.org), Nov 07 2003
STATUS
approved