login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A005801
Generalized tangent numbers of type 3^(2n+1).
(Formerly M5218)
0
0, 30, 217800, 16294301520, 6544151202877440, 9764950519194817858560, 42762698240957239228617722880, 466476501707480855594001261422438400, 11235366943887873286558941529247982529413120
OFFSET
0,2
REFERENCES
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
Ira M. Gessel, Symmetric functions and P-recursiveness, J. Combin. Theory Ser. A 53 (1990), no. 2, 257-285.
FORMULA
a(n) = 1/3^(2*n+1) * Sum_{i=0..2*n+1} (-1)^(i+1) * 2^-i * binomial(2*n+1, i) * A000182(n+i+1).
a(n) ~ 2^(1/2)*3^(-1/2)*Pi^(-1/2)*n^(-1/2)*2^(8*n)*3^(-3*n)*{1 - 13/144*n^-1 + 169/41472*n^-2 + 48635/17915904*n^-3 - ...}. - Joe Keane (jgk(AT)jgk.org), Nov 07 2003
MATHEMATICA
a000182[n_] := (4^n*(4^n-1)*Abs[BernoulliB[2*n]])/(2*n); a[n_] := Sum[((-1)^(i+1)*Binomial[2*n+1, i]*a000182[n+i+1])/2^i, {i, 0, 2*n+1}]/3^(2*n+1)
CROSSREFS
Cf. A000182 (tangent numbers).
Sequence in context: A028668 A231815 A291995 * A079601 A307915 A238636
KEYWORD
nonn,easy
EXTENSIONS
Edited by Dean Hickerson, Dec 10 2002
More terms from Joe Keane (jgk(AT)jgk.org), Nov 07 2003
STATUS
approved